
MASTER’S THESIS 2023

Extending the ExtendJ Java
Compiler
Johannes Aronsson, David Björk

ISSN 1650-2884
LU-CS-EX: 2023-12

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY





EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-12

Extending the ExtendJ Java Compiler

Utökning av ExtendJ Java kompilatorn

Johannes Aronsson, David Björk





Extending the ExtendJ Java Compiler

Johannes Aronsson
jo5152ar-s@student.lu.se

David Björk
da1705bj-s@student.lu.se

May 29, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Idriss Riouak, idriss.riouak@cs.lth.se

Examiner: Görel Hedin, gorel.hedin@cs.lth.se

mailto:jo5152ar-s@student.lu.se
mailto:da1705bj-s@student.lu.se
mailto:idriss.riouak@cs.lth.se
mailto:gorel.hedin@cs.lth.se




Abstract

ExtendJ is a Java compiler supporting Java versions from 4 to 8, and it is built
using the JastAdd metacompiler. ExtendJ is designed to enable modular ex-
tensions. This thesis aims to examine ExtendJ’s extendibility and performance
by attempting to add support for Java versions 9, 10, and 11. Many features were
introduced in these versions, including local type inference with the var iden-
tifier. The implemented features were then evaluated by compiling real-world
projects to validate the implementation and measure compilation time as well
as memory usage. Finding and compiling relevant projects proved difficult, and
almost only projects using Java 8 features and earlier where compiled. The per-
formance of ExtendJ versions 8 to 11 was compared with the corresponding
OpenJDK compilers by measuring compilation time and memory consumption.
The compilation time of ExtendJ was found to be within a factor of 3, while
the memory consumption was within a factor of 6. We also found that ExtendJ
is modularly extensible to a high degree.

Keywords: Java, JastAdd, Compiler, Reference Attribute Grammars



2



Acknowledgments

We would like to thank our supervisor, Idriss Riouak, for his continuous help throughout the
entire thesis work with weekly meetings and for his additional help when we needed it.

3



4



Contents

1 Introduction 9

2 Background 11
2.1 Compiler Architecture and Functionality . . . . . . . . . . . . . . . . . . . 11

2.1.1 Scanning and Parsing . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Abstract Syntax Trees . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 ExtendJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Attribute Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Reference Attribute Grammars . . . . . . . . . . . . . . . . . . . . 15
2.3.2 The JastAdd Metacompiler . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The Java Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Java 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Java 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Java 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Evaluating Java Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Validation of a Program . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Implementation 23
3.1 Java 9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Try-with-resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 SafeVarargs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Private Interface Methods . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Remove Underscore as an Identifier . . . . . . . . . . . . . . . . . 25
3.1.5 Diamond Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Java 10 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Var Type Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Java 11 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5



CONTENTS

3.3.1 Var in Lambda Expressions . . . . . . . . . . . . . . . . . . . . . . 27

4 Evaluation 29
4.1 Extendibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Lines of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Compiling Real-World Projects . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Modifying Build Scripts . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Manual Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Replacing the javac Executable . . . . . . . . . . . . . . . . . . . . 32

4.3 Validation of Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Regression Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Validation on Real-World Projects . . . . . . . . . . . . . . . . . . 33

4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Compilation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.2 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Discussion 39
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Difficulties Evaluating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusions 43

References 45

6



Contribution Statement

The table below indicates the responsibilities each author had in writing this thesis:

Author Writing Implementation Compiling Projects Performance Evaluation

J. Aronsson
D. Björk

The dark portion of the circle represents the amount of work and responsibilities assigned
to each author for each individual step:

Author was a minor contributor to the work.

Author was a contributor to the work.

Author led and did a majority of the work.

Author led and did almost all of the work.

7



CONTENTS

8



Chapter 1

Introduction

Compilers are an essential tool in the software development process. A compiler translates
code from a source programming language into another target language. They make it possi-
ble to write code in a high-level language that is then compiled into a lower-level language or
executable. The high-level language can be designed to be easy and fast to write, understand,
and debug making development efficient. The target language can instead be designed for ex-
ecution speed, memory usage and processor architecture-specific performance. Designing a
language to be compiled can therefore lead to high-level abstractions and good performance.

The Java programming language is a high-level language compiled into a lower-level lan-
guage called Java bytecode. Java code can be compiled using the official reference Java com-
piler included in OpenJDK, or using other open-source or commercial alternatives, e.g., the
Eclipse compiler. ExtendJ [1], formerly JastAddJ, is yet another Java compiler and was
built to support the research of compilers. ExtendJ is based on Reference Attribute Grammars
(RAGs) that are extensible by their nature. RAGs specify the behavior of a programming lan-
guage by declaring attributes for nodes in a tree, e.g., the Abstract Syntax Tree (AST) created
by a parser. The implementation of RAGs that ExtendJ uses is the JastAdd [2] metacom-
piler. The JastAdd metacompiler is a system for compiler construction and code analysis
tools using RAGs. A main feature of both the system and the ExtendJ compiler is enabling
modular extensions [1, 2].

Several extensions have been created for the ExtendJ compiler, e.g., the two static pro-
gram analysis tools, IntraCFG [3] and a non-null checker [4]. Another example is the JFea-
ture [5] tool that uses ExtendJ to identify Java features for different projects.

ExtendJ currently supports Java versions 4-8, where Java 4 is the base version, and the
newer versions have been added as modules to the compiler [6, 7]. To further test the ex-
tendibility of ExtendJ and JastAdd and to allow for future extensions to be built for Ex-
tendJ, this thesis aimed to add support for more recent Java versions. Extending ExtendJ
would improve existing tools, e.g., updating JFeature to be able to analyze more recent
projects using the new Java language features. The first long-term support (LTS) version of
Java was Java 8, later followed by Java 11. This thesis aimed to add support for Java 9, 10, and

9



1. Introduction

11 features so that ExtendJ can eventually be fully compliant with the Java 11 LTS release.
In addition to improving ExtendJ, this thesis aimed to evaluate it in two main ways. The
first one was to assess to what extent it is possible to add extensions in a modular fashion
since that is an essential feature of the compiler and the JastAdd system. The second was
to measure the extended versions’ performance and precision limitations compared to the
OpenJDK-based Java compilers. These goals are presented below as two research questions
we sought to answer in this thesis.

RQ1: How modularly extensible is the ExtendJ Java compiler?
RQ2: What are the limitations in performance and precision compared to the javac
compiler?

The structure of this report is as follows. Chapter 2 presents the theoretical foundations
for compiler construction, the JastAdd system and the Java language. Chapter 3 introduces
the changes required to add support for the Java 9, Java 10, and Java 11 features. Then, the
evaluation of the compiler is presented in Chapter 4. Finally, we discuss the results in Chapter
5 and answer the research questions in Chapter 6.

10



Chapter 2

Background

A compiler can significantly affect the compiled code’s performance and development effi-
ciency through faster build times. This chapter begins by outlining the fundamental steps
that many compilers employ to compile a program in Section 2.1. Then, the ExtendJ com-
piler and the JastAdd system are described in Sections 2.2 and 2.3. In Section 2.4, we intro-
duce the Java programming language, and the new language features introduced in Java 9, 10,
and 11. Finally, we will describe how the performance and validity of a Java program can be
analyzed in Section 2.5.

2.1 Compiler Architecture and Functionality
A compiler can perform many tasks and compilers for different languages can significantly
differ. However, a compiler usually consists of a front-end and a back-end. The purpose of
the front-end is usually scanning and parsing the source code as well as performing syntactic
and semantic analysis. The back-end then generates the target code for the program. This
section provides a high-level overview of the key concepts involved in the construction and
phases of a compiler, in the context of ExtendJ.

2.1.1 Scanning and Parsing
The first step ExtendJ performs is scanning. The scanning phase uses JFlex [8] to generate
a scanner from the developer’s scanner specification. The specification consists of regular
expressions describing what tokens to create when scanning through a source file.

The created stream of tokens is then parsed into an Abstract Syntax Tree that follows a
JastAdd abstract grammar [2]. This is done using the Beaver parser generator [9] to trans-
form the parser specification into an LR parser with a look-ahead of one (LALR(1)) [10]. An
LALR(1) parser has limited knowledge about the context and performs shift or reduce actions

11



2. Background

on the stream of tokens it parses according to the production rules. The specification de-
fines production rules for language constructs such as statements and expressions. There is a
conflict if these rules are ambiguous, and two or more rules can match a set of tokens simul-
taneously. Reduce-reduce conflicts occur when two rules match fully and either can be applied.
Shift-reduce conflicts occur when one rule can be applied to perform a reduce action and an-
other to perform a shift action. These conflicts must be avoided to have a well-functioning
parser. If there are no parser rules that match a given set of tokens or if the source files contain
strings that do not match any scanner rule, it is a syntax error.

2.1.2 Abstract Syntax Trees
The Abstract Syntax Tree (AST) is a tree created by the parser containing nodes representing
language constructs in a source file. The AST representation allows analysis of a program to
be written efficiently, e.g., in JastAdd, by declaring attributes for nodes. These attributes
are described further in Section 2.3. Figure 2.1 shows an example of a part of an AST corre-
sponding to the assignment statement int y = 2; and the arithmetic expression 1 + y
* 3. The Figure demonstrates how the AST nodes are related to tokens and groups of tokens
in a program and how nodes can be connected through reference attributes, explained fur-
ther in 2.3.1. In this example, a VarAccess node keeps track of where the variable is declared
through the reference attribute decl().

In JastAdd, the AST nodes are represented in Java classes that are defined in the abstract
grammar files. These define the primary class hierarchy and which children AST nodes have.
There are also several additional Java classes to represent lists and optional children. All AST
nodes inherit from ASTNode and additional classes, e.g., Expr and Stmt, are introduced to
make attributes reusable. All expressions inherit from Expr and similarly for other struc-
tures. In this thesis, the color notation of the ASTNode node means it is a Java object that is
a node in the AST.

2.1.3 Semantic Analysis
Upon completion of syntactic analysis, the subsequent phase is semantic analysis of the parsed
program. Here semantic errors such as type errors, variables missing declarations, and more
are detected. This analysis is typically done on the AST created by the parser. Semantic
analysis in ExtendJ is done mainly with JastAdd attributes.

2.1.4 Code Generation
The last step of the compilation is to generate the target code that can then be run. The code
generation step is the main part of the back-end of a compiler, and it is common to have
multiple back-ends so that target code for different target systems can be generated. For Ex-
tendJ, the code generation is done by directly transforming the AST nodes into so-called Java
bytecode [11] that can then be run on the Java Virtual Machine (JVM). The bytecode is stored
in class files that can then be run directly, if they contain a main method, or are called by
other class files. A benefit of Java is that only one back-end is needed with the JVM enabling
the generated code to be run on different operative systems or computer architectures.

12



2.2 ExtendJ

AddExpr

MulExpr
Integer
Literal

Integer
LiteralVarAccess

VarDecl-
Stmt

Type-
Access

Variable-
Declarator

decl()

String 
Literal

Integer 
Literal

1    +    y    *    3 int      y    =    2 

Child - Parent

Reference Attribute

AST node

Program
Child - Ancestor
Node - Token

Token

Figure 2.1: A simplified example of an AST showing how nodes re-
late to the source code and how the use of a variable is connected to
the declaration of the variable through a reference attribute.

2.2 ExtendJ
ExtendJ is a Java compiler mainly built using the JastAdd metacompiler system [1] de-
scribed in Section 2.3.2. The purpose of ExtendJ is to function as a regular Java compiler
while having a modular design to make it possible to add extensions to the language. Func-
tioning as a Java compiler means it creates class files from Java source code that can then be
run by a regular Java run-time environment [1]. The main components of ExtendJ are the
Java version modules consisting of a back-end and a front-end. These consist of aspects [12]
that enables the modular definition of attributes for the AST nodes. Using aspects, new
attributes or methods can be declared and existing functionality extended or overwritten.

The parser in ExtendJ is built using the Beaver [9] parser generator, and the scanner
using the JFlex [8] scanner generator. These do not enable a modular design, but a pre-
processor in JastAdd allows definitions to be split into different files. This enables the
compiler to be separated into modules corresponding to a Java version. Using an appropriate
build script, the modules can be combined, compiled, and packaged into a jar file to create a
Java compiler for any supported Java version.

The latest significant extension of ExtendJ was with the Extending JastAddJ to Java 8 [7]
paper in 2014. ExtendJ currently supports almost all Java 8 features, and contains some bugs
and minor issues, mostly related to type inference. Therefore, it can compile most, but not
all, Java 8 projects1.

1The compliance issues for ExtendJ are described further on the ExtendJ web page: https://extendj.
org/compliance.html

13

https://extendj.org/compliance.html
https://extendj.org/compliance.html


2. Background

syn Type Expr.type ();
eq MinusExpr .type () = getOperand ().type ();
eq IntegerLiteral .type () = typeInt ();

Listing 2.1: A synthesized attribute type() propagating type infor-
mation upwards in the AST.

inh boolean BreakStmt . insideLoop ();
eq Program . getChild (). insideLoop () = false;
eq ForStmt . getStmt (). insideLoop () = true;
eq WhileStmt . getStmt (). insideLoop () = true;

Listing 2.2: An inherited attribute insideLoop() propagating in-
formation downwards in the AST.

2.3 Attribute Grammars
Attribute Grammars [13] (AGs) are a formalism for specifying the syntax and semantics of a
programming language. This is done by adding attributes to the parsed tree of a string such as
the AST parsed from a source file. These attributes are specified in a declarative way, which
means that the rules to compute attributes are specified, but not the order in which they will
be applied [14]. This enables new ways to solve problems by dividing them into attributes
and declaring them individually [15].

We can distinguish two types of attributes: synthesized and inherited. Synthesized at-
tributes are a way to propagate information upwards in the AST. They consist of a declara-
tion and one or more equations for the node type or sub-types of it. The example in Listing
2.1 shows how type information for expressions can be calculated and propagated upwards.
The Expr nodes need type information, and for this, we declare the type() attribute for
Expr. To compute the type, we declare appropriate equations for sub-types of Expr, e.g., for
MinusExpr and IntegerLiteral. The type() attribute can then be used to check type
compatibility by comparing the expression type with the requirements of the context it is in.

To propagate information downwards in the AST, inherited attributes are needed. This
allows nodes to find information about their surrounding context by accessing attributes
in ancestor nodes. The attribute is computed by traversing the tree upwards until the first
ancestor node that has a definition for the attribute is found. Listing 2.2 shows a simplified
example from ExtendJ where we compute if a BreakStmt is inside a loop. The attribute
is declared in the BreakStmt but can only be computed by ancestor nodes since context is
needed. If the BreakStmt is inside a loop, it will either be the full body or a child of the body
of a ForStmt or WhileStmt. JastAdd will traverse the AST upwards until it finds a node
that is the statement body of a ForStmt or WhileStmt, or until the root Program node is
found.

14



2.3 Attribute Grammars

syn nta TypeDecl Program . typeNull () {
NullType classDecl = new NullType ();
return classDecl ;

}

Listing 2.3: A declaration of a simple NTA typeNull() corre-
sponding to the built in null-type.

2.3.1 Reference Attribute Grammars
Reference Attribute Grammars [16] (RAGs) were introduced as an extension of attribute gram-
mars for object-oriented languages. AGs are limited when dealing with properties that are
far away in the AST from where they are needed [16]. With RAGs, attributes can now be
references to other tree nodes, allowing such properties to be computed efficiently. An ex-
ample of this can be found in Listing 2.1, where the types themselves are AST nodes in the
tree, either as built-in type nodes or class declaration nodes.

Reference attributes that become part of the AST when being evaluated are called Non-
Terminal Attributes (NTA). The new NTA node becomes a child to the node where the at-
tribute is defined. This means the value of the attribute is a new node that has the node
defining it as its parent. The simplified example in Listing 2.3 demonstrates how an NTA is
used in ExtendJ to create a null-type node. This is needed for all basic types since there are
no classes defining them, but they still need to be represented by an AST node.

There are many systems that implement the RAGs formalism, e.g., Kiama [17], Sil-
ver [18], and JastAdd [2]. In this thesis we will focus on the JastAdd metacompiler.

2.3.2 The JastAdd Metacompiler
JastAdd is a system designed for constructing compilers and related tools in a modular way
[2]. JastAdd is composed of a language and a compiler. JastAdd not only supports RAGs,
but also additional attributes such as NTAs [19] and circular attributes [20, 21]. The circular
attributes can depend on themselves, and have their value calculated by finding a fixed point
through iteration.

All attributes, equations, fields, and methods for the AST nodes in JastAdd are part of
an aspect. The JastAdd system reads the aspects and inserts the contents into the target
AST classes. This allows additions to be made to the classes without needing to modify the
class directly, making them easier to extend. Additionally, this allows the definition of classes
to be divided into different aspects enabling a modular design.

Refining attributes
To further allow for modular extensions JastAdd facilitates a way to make changes to ex-
isting attributes and methods using the keyword refine. This allows new modules to change
the behavior of the existing code without needing to modify it directly. An example of this

15



2. Background

aspect Modifiers {
syn boolean MethodDecl . isAbstract () =

getModifiers (). isAbstract () ||
hostType (). isInterfaceDecl ();

}

aspect Java8Modifiers {
refine Modifiers
eq MethodDecl . isAbstract () =

getModifiers (). isAbstract () ||
( hostType (). isInterfaceDecl () &&
! isStatic () && ! isDefault ());

}

Listing 2.4: An original attribute and its refined counterpart.

can be seen in Listing 2.4, where static and default interface methods were introduced
in Java 8. In the example, we can see how the original attribute isAbstract() for method
declaration nodes, MethodDecl, in the aspect Modifiers is refined in the Java 8 aspect
Java8Modifiers. Now the isAbstract() attribute can account for the new types of in-
terface methods without requiring any changes to where the attribute is used. This allows
new modules to redefine the implementation of older attributes meaning the older modules
can be extended without being modified directly.

2.4 The Java Language
The Java programming language has been popular for many years and is used extensively. The
language is constantly evolving, with new versions being released regularly. These versions
come with new additions and changes to the language to keep it modern and relevant. This
section will describe changes made to the language in Java 9, Java 10, and Java 11.

This thesis uses the Oracle Java SE binaries as a reference Java compiler and run-time
environment. The official reference implementation of Java is the OpenJDK JVM [22], but
production-ready binaries are available through Oracle or other vendors. For the remainder
of this thesis, when referencing the javac compiler, we mean these compilers unless otherwise
specified.

2.4.1 Java 9
Java 9 introduces six changes to the Java language, four of which are minor, one more sub-
stantial, and one requiring extensive changes to the OpenJDK JVM. The six changes are as
follows:

16



2.4 The Java Language

try ( Scanner scanner =
new Scanner (new File("in.txt"));

PrintWriter writer =
new PrintWriter (new File("out.txt"))) {
/* use resources */

}

Listing 2.5: In Java 8 the resources need to be created in the try-with-
resources statement.

• Final and effectively final variables can be used as resources in the try-with-resources
statement,

• The @SafeVarargs modifier can be used with private instance methods,

• The diamond operator can be used with anonymous classes if the argument type of the
inferred type is denotable,

• Remove underscore from the set of legal identifier names,

• Interfaces can have private methods, and,

• The module system.

Of the six changes, the module system is the largest and was part of the larger Jigsaw
Project [23], which also introduced extensive changes to the internal structure of the JVM.

At its core, a module is a set of related packages that have been grouped together. Pack-
ages within modules may be classed as ‘exported’, meaning that their types may be accessed
from outside the module. If packages are not exported, only other packages within the mod-
ule may reach them [24, p. 175]. Adding support for this in ExtendJ would mean the module
information files would need to be parsed and the contents incorporated into the name anal-
ysis. We decided it was not realistic to include support for modules in the scope of this thesis.

Of the five remaining features, the largest one is the update to the try-with-resources
statement [24, p. 470-475]. The update means resources in the resource list can be declared
outside of the try-statement if they are final or effectively final. This, in turn, can lead to more
concise code. A variable is effectively final if its value is not changed after initialization. For
objects, this means that the reference to the object is not changed, while the state of the object
itself may be altered.

An example using try-with-resources is shown in Listing 2.5, and how it can be re-written
using the changes introduced in Java 9 is shown in Listing 2.6.

2.4.2 Java 10
Java 10 introduces type inference for local variables with the var identifier. This decreases
the amount of boilerplate code needed when declaring variables [25]. Using var can help

17



2. Background

final Scanner scanner =
new Scanner (new File("in.txt"));
PrintWriter writer =
new PrintWriter (new File("out.txt"));
try ( scanner ; writer) { /* use resources */ }

Listing 2.6: Java 9 allows more compact try-with-resources state-
ments. The variable scanner is final, and writer is effectively fi-
nal.

ArrayList <String > list = new ArrayList <String >();
Stream <String > stream = list.stream ();

Listing 2.7: In Java 9, all local variables must have an explicit type.

make the code more readable and faster to write if used in the correct situations. The Java
10 specification states the following regarding var: "var is not a keyword, but rather an iden-
tifier with special meaning as the type of a local variable declaration." [26, p. 24]. This means the
identifier is context sensitive and the rules for its used depends on how it is used. It can be
used as normal for e.g., variable and method identifiers, but not as the identifier for classes
or interfaces. The identifier also comes with several limitations on its use in declarations. It
is a compile-time error if:

• var is used to declare more than one variable. E.g., var x = 1, y = 2;,

• var is used to declare a variable with bracket pairs. E.g., var x[] = y;,

• A variable declaration using var lacks an initializer. E.g., var x;

• A variable declaration using var has an array initializer. E.g., var x = {1, 2};, or,

• A variable declaration using var has an initializer containing a reference to itself. E.g.,
var x = (x = 1);.

An example of how var can be used is illustrated in Listings 2.7 and 2.8.
An interesting property of the var identifier, is that it allows us to capture certain non-

denotable types as the type of our variable. Non-denotable types are types that cannot be
written with the language syntax. In Java 10, these include intersection types, capture types,
anonymous class types, and the null-type. Of these, intersection types and anonymous class
types can be inferred as is, while the null-type is rejected. Capture types are treated specially,
which is described in the following section. The effect of this is that there are programs that
can be expressed with the help of the var identifier that cannot be expressed without it. A
survey on the OpenJDK code base found that 1% of all variable declarations that have an
initializer would contain a capture type if they were changed to a declaration using var [25].

18



2.5 Evaluating Java Programs

// infers type: ArrayList <String >
var list = new ArrayList <String >();
// infers type: Stream <String >
var stream = list.stream ();

Listing 2.8: In Java 10, local variable types can be inferred using var.

lines. forEach ( (line) ->
{ System.out. println (line);} );

Listing 2.9: In Java 10, the type of lambda parameters is either ex-
plicitly typed or there is no type declared.

Type Projections
Capture types may contain synthetic type variables, which are type variables introduced by
the compiler during capture conversion or inference variable resolution [26]. The type of
a variable declared with var may not contain these type variables according to the Java 10
specification [26, p. 76-78], and they are instead replaced by applying an upward type projection
on the type. This projection is also described in the Java 10 specification. The type projection
is always applied to the type of the initializer of a declaration using var. On types that are
not or do not contain synthetic type variables, upward type projection acts as the identity
function, while for others it finds a suitable replacement type. For parameterized types such
as Map<K, V>, it replaces each type with its respective upward projection, and for arrays, it
performs an upward projection on the base type.

2.4.3 Java 11
In Java 11, the decision was made to allow the var identifier to also be used for implicitly
typed lambda expressions. Type inference for lambda expressions is not new, but this change
creates better uniformity in the language and enables the use of type annotations in a concise
way [27]. Listing 2.9 demonstrates how the type of lambda parameters could be inferred in
Java 10, and Listing 2.10 shows the additional way the types can be inferred using var in Java
11.

2.5 Evaluating Java Programs
Evaluating software can generally be divided into two main categories, correctness and per-
formance. In Section 2.5.1 we describe how performance of a Java program can be measured
and analyzed, and in Section 2.5.2 how a program’s correctness can be evaluated.

19



2. Background

lines. forEach ( (var line) ->
{System.out. println (line);} );

Listing 2.10: In Java 11, lambda parameters can be declared with the
identifier var.

2.5.1 Performance Evaluation
The performance of Java programs is complex to analyze through benchmarking since many
factors can affect the results. One factor that makes Java stand out from many other languages
is the Just-In-Time (JIT) compilation that optimizes the program during run-time. Meaning
that an initial run in a JVM may have significantly different performance than subsequent
runs. Once a program has been executed a certain number of times within a JVM, its perfor-
mance will stabilize due to the JIT compiler’s limited optimization capacity, reaching a state
called steady-state. Analyzing both steady-state and start-up performance is relevant since
different use cases will be dependent more on one or the other. For a developer compiling a
project the start-up performance will matter most since the project is typically only compiled
once at a time. For an interactive code analysis tool that is constantly compiling code when
changes are made, it is more likely the steady-state performance that matters more because
the subsequent compilations can be performed in the same JVM.

This thesis uses the approach described in the paper Statistically Rigorous Java Performance
Evaluation by A. Georges, D. Buytaert and L. Eeckhout [28]. The paper describes how to
handle the non-determinism of Java performance, to avoid drawing incorrect conclusions
from an evaluation.

When measuring start-up performance, Georges et al. recommend the following proce-
dure. First, measure the performance of multiple VM invocations, where each invocation
runs a single benchmark iteration. Once these measurements are obtained, take the mean,
and from that value calculate the confidence interval for the desired confidence level. Note
that this procedure assumes all measurements are independent of each other. For this rea-
son, excluding the first VM invocation is good practice, as it may make system changes that
persist past the first invocation [28].

Measuring steady-state performance is more complicated than measuring start-up per-
formance, as there is a need to determine when a steady-state is reached. How many iter-
ations it takes to reach such a steady-state can vary greatly depending on the application
that is evaluated [28]. The general way to measure steady-state performance is to measure
the performance of multiple iterations of a benchmark over multiple VM invocations. To
determine when steady-state performance is reached, the coefficient of variation (CoV) of the
last k iterations is used. Once the CoV falls below a predetermined value, the mean for that
VM invocation using the measurements of the last k iterations is computed. These means
are then used to calculate an overall mean, which is, in turn, used to compute the confidence
interval for the desired confidence level, just as with start-up performance [28].

A confidence interval is an interval for which there is a given likelihood that the actual
mean of the population is within the interval. As such, intervals will be larger for higher
degrees of confidence, i.e., a 95% confidence interval will be larger than a 90% confidence

20



2.5 Evaluating Java Programs

interval. The way these confidence intervals are calculated depends on the number of samples.
If the number of measurements is small (n < 30), the Student’s t-distribution can be used. If the
number of measurements is large (n >= 30), we can instead use the Gaussian distribution [28].

Analysis of Variance (ANOVA) is a way to compare multiple alternatives, where one vari-
able is altered between each alternative. The idea behind ANOVA is to compare the varia-
tion within an alternative to the variation between alternatives. ANOVA assumes that the
variation within each alternative is due to random effects (errors) in the measurements. If
the variation between alternatives is greater than the variation within them, then one can
conclude that there is a statistically significant difference between them. In practice, this
means that three values are computed: the sum-of-squares due to the difference between
alternatives (SSA), the sum-of-squares due to errors between measurements (SSE), and the
sum-of-squares total (SST), which is the sum of the SSA and SSE. A simple way to quantify
whether the variation within or between alternatives is greater is to compare the fractions
SSE/SST versus SSA/SST [28].

2.5.2 Validation of a Program
Program validation is a crucial process in software development that involves assessing the
correctness, completeness, and quality of a computer program. It ensures that the software
meets the specified requirements and performs its intended functions as expected, while also
identifying and correcting any errors or defects that may affect its performance or reliability.
By validating a program, developers can increase confidence in its correctness, reduce the risk
of bugs and system failures, and improve the overall user experience. There are many ways
to achieve this such as:

• Manual inspection,

• program analysis,

• automated tests, and,

• execution on real world input.

Each method has its own benefits and drawbacks that need to be considered. Manual in-
spection is simple and allows a skilled developer to notice bugs early, but it is also a time-
consuming process, and as such does not scale well with larger projects. Program analysis, on
the other hand, allows the developer to make firmer statements regarding the completeness
and correctness of their software. While this is the case, finding and adapting appropriate
program analysis methods, while also ensuring that the theory behind the analysis is sound,
is no simple matter. Automated testing and execution on real world input, in contrast to
program analysis, are far more practical methods. One of the most common types of auto-
mated testing is unit testing, where each test tests a specific feature. Unit tests are simple to
write, and can allow developers to cover a large part of the codebase. However, a limitation
of unit testing is that it can only show that the program has the expected behavior for specific
inputs. As such, executing the program on real world input can be a complementary step, as
it may help in discovering hard to foresee edge cases.

It is important to note that no program testing method can guarantee that all bugs, or
indeed any bugs, will be found. As Dijkstra stated in 1970 – "Program testing can be used to
show the presence of bugs, but never to show their absence" [29].

21



2. Background

22



Chapter 3

Implementation

This chapter describes the implementation of the Java 9, 10, and 11 features. The issues faced
during implementation are also described to help answer the research questions.

3.1 Java 9 Implementation
Implementing the Java 9 features could be done modularly, except the addition of the en-
hanced try-with-resources (TWR) statement, that required changes to the previous imple-
mentation. The minor language changes introduced in Java 9 were simple to implement and,
as such, will not be covered in detail. Focus will instead lie on the changes made to the TWR
statement.

3.1.1 Try-with-resources
The extension to the TWR statement could not be done by adding a module. Adding a new
production to the parser in the Java 9 module would create conflicts, but it was necessary to
accommodate the use of resources in addition to declarations. This is due to the parser’s lim-
ited knowledge, making it impossible for a new rule not to cause conflicts with the existing
parser. A new parser rule would have to allow an arbitrary number of resource declarations
and resource uses, but it cannot track whether at least one resource use was parsed. This
means that this new rule would match a TWR statement only containing resource declara-
tions. The old rule would also match this, creating a reduce-reduce conflict. Extending the
current production was not possible either since the existing rules were not compatible with
the extension.

There were two main ways of solving this limitation. The first solution was to rewrite the
Java 7 implementation to make it more extendable and add a Java 9 module that extends it.
The downside is that changing the Java 7 implementation might cause bugs or issues that were
previously not there. The second solution was to exclude the Java 7 implementation from the

23



3. Implementation

build scripts and add a new implementation for TWR in Java 9. Doing this would cause
significant code duplication since the new solution would still be based on the original one.
We chose the first option since this makes the entire implementation easier to understand
and more extendable in the future.

We tried two ways to change the Java 7 implementation to be more extendable. The first
one was to wrap ResourceDeclaration in a statement node, ResourceDeclStmt, this
node could later be extended to contain other forms of resources that are not declarations.
This was fast and relatively easy to implement, but would have two negative effects on the
compiler. One is memory usage, where we now have one more node for each resource with the
only purpose of wrapping a resource node. The second is that the implementation added one
attribute to all statement nodes, meaning further memory usage and unnecessary attributes
for all other statement nodes.

The second method introduced an abstract node type, i.e., Resource, which inherits
the type Stmt. ResourceDeclaration was then changed to be a subtype of Resource
rather than VariableDeclarator. This structure would make it easy to introduce
a new node ResourceUse, a subtype of the Resource type. However, this means
ResourceDeclaration is no longer a VariableDeclarator, but rather contains one.
This required changing many attributes in the Java 7 module, where attributes that were pre-
viously part of ResourceDeclaration directly now are part of the VariableDeclarator
contained in it.

A benefit of this approach was that it was more natural to construct parser rules. All
that was needed was changing the type of the list of resources to be of the type Resource
instead of the type ResourceDeclaration in the Java 7 module. Additional rules could
then be added in the Java 9 module for parsing the new type of resource. Another benefit
is potentially decreasing the extra memory needed. In the first solution, we created an ad-
ditional node for each resource, but with this solution, there is one node created for each
ResourceDeclaration and no additional nodes created for each ResourceUse. These
two benefits caused us to select this way of changing the Java 7 implementation.

After implementing the changes to the Java 7 TWR module and adding the front-end for
the Java 9 solution, the next step was deciding how to implement the bytecode generation.
The Java 9 addition to TWR meant that the resource list could now contain uses of variables
in addition to declarations of variables. What variables can be used as resources are limited to
local or field variables that are final or effectively final. Two main ways of implementing this
addition to the bytecode generation were explored. The first was following the way the Java 9
specification describes it by replacing the use of a variable in a resource list with a declaration
of a temporary variable of the same type [24, p. 472], see Figure 3.1. This temporary variable
requires a unique identifier and a transformation of the AST to insert its declaration in place
of the original variable. All uses of the variable in the TWR statement would then need to be
replaced by the new temporary variable. This would require several additions to ExtendJ,
since there is no current support for creating unique identifiers for temporary variables and
for replacing uses of a variable with the new temporary variable. The second was to ignore
the Java 9 specification, keep the original variable, use it in the TWR block and then close it
in a generated finally clause. This would only require minimal additions to the bytecode
generation and would still follow the behavior defined by the Java 9 specification and was
therefore chosen.

24



3.1 Java 9 Implementation

If a basic try-with-resource statement is of the form: 
try (VariableAccess ...) Block

then the resource is first converted to a local variable 
declaration by the following translation: 

try (T #r = VariableAccess ...) { Block } 

Figure 3.1: Excerpt from the Java 9 specification [24, p. 472] describ-
ing how use of variables in a try-with-resources statement are trans-
formed into a declaration of a temporary resource.

3.1.2 SafeVarargs
Allowing the SafeVarargs annotation to be used on private instance methods was possi-
ble to do in a modular way. The only modification needed was an extension to the error
reporting system which was straightforward to implement. This was done with a refine of
the safeVarargsProblems() attribute, adding a check to allow the use on private method
declarations.

3.1.3 Private Interface Methods
The Java 9 addition of private interface methods could be implemented modularly by refining
how the method declaration, i.e., MethodDecl, modifiers are determined and how the error
reporting for the modifiers is done. A small addition to ClassDecl was also necessary to
correctly determine if a class has unimplemented methods.

In addition to these changes, a minor change in bytecode generation had to be imple-
mented. Since private methods were previously not allowed in interfaces, there was no code
for handling private methods in interfaces when generating bytecode.

3.1.4 Remove Underscore as an Identifier
Preventing underscore from being used as an identifier was fast to implement and it could be
done in a modular way. Existing name error checking for different types of identifiers could
be refined to check for underscore identifiers and report them as errors. The way this was
implemented was by adding the check in Listing 3.1 to the error reporting corresponding to
declarations.

3.1.5 Diamond Operator
Java 9 allows the diamond operator to be used with anonymous classes if the inferred type is
denotable. This introduced the need to check denotability in ExtendJ. Denotable types are
types one could find in Java code- i.e., built-in types, classes, and interfaces. Non-denotable
types are all other types, such as null or anonymous classes.

25



3. Implementation

if(name ().equals("_")){
problems .add(error("As of release 9, ‘_’ is a

keyword , and may not be used as ..."));
}

Listing 3.1: The addition that was made to error reporting for all
declarations, so that underscore may not be used as an identifier.

The implementation of this addition is not complete, and when using the diamond op-
erator in this context on an interface, ExtendJ will crash. Using the diamond operator with
interfaces causes the type of the anonymous class to be inferred incorrectly, and we did not
manage to find the cause for this. The implemented changes could be made modularly with-
out modifying the existing modules.

3.2 Java 10 Implementation
The only change in the Java language from version 9 to 10 was the addition of local type
inference with the var type identifier. Implementing this language feature was in large parts
straightforward, since the type inference system already in place could be reused.

3.2.1 Var Type Identifier
Since the usage of var is context sensitive, and only has special meaning as a type identifier,
it could not be added as a keyword. As such, var was implemented by adding an attribute
isVar() to the VarDeclStmt node and related nodes that returns true when the name of
the declared type is "var". The attribute VarDeclStmt.type() was then refined to return
the inferred type of the variable if it was declared using var, and the declared type if it was
not. To find the inferred type another attribute was added to the VarDeclStmt node. This
attribute was also added to EnhancedForStmt, i.e., for each-loops, since the loop variable
can now also be declared using var. The value of the attribute will be the component type of an
array being iterated over or the iterableElementType() of the collection being iterated
over. This also needed a small addition to the code generation for EnhancedForStmt to use
the inferred type when needed.

The var identifier has several restrictions that regular type identifiers do not have. For
example, there are initializers that require an explicit target type, and are not allowed to be
used in a declaration using var. Among these initializers are array literals as well as lambda
expressions. If they are used in this context, then an error should be produced in accordance
with the Java specification [26, p. 433 – 434]. Another restriction mentioned in Section 2.4.2
is that a variable declared with the var identifier cannot be referenced in its own initializer.
To detect these occurrences, an attribute varOccurs() was added to all expression types
that are valid initializers for the var identifier. This attribute returns true if the variable
occurs in the initializer, and false otherwise. This check was then implemented for all

26



3.3 Java 11 Implementation

Expr nodes where a variable use may occur, to identify when the variable being declared is
used. Since many Expr nodes may contain other expressions, this check is done recursively
on those Expr nodes.

As stated in Section 2.4.2, capture types should be projected to a supertype using upward
type projection. An attempt was made to implement type projection by closely following
the description found in the Java 10 language specification [26, p. 76-78]. However, this
implementation attempt had to be abandoned. The most significant issue encountered was
in verifying the correctness of the implementation. Writing tests where the inferred type
of an expression contained relevant capture types proved difficult. To test type projections,
capture types containing synthetic type variables are needed and without this, it became
impossible to test the implementation. An extensive search for existing tests was carried out,
but no tests were found. As such, the Java 10 implementation is not feature-complete.

3.3 Java 11 Implementation
The only new language addition in Java 11 was enabling the use of the var identifier in lambda
expressions.

inh lazy TypeDecl
ParameterDeclaration . inferredType ();

refine TypeAnalysis
eq ParameterDeclaration .type () {

if( getTypeAccess () != null &&
getTypeAccess ().isVar ()){

return inferredType ();
}
return getTypeAccess ().type ();

}

Listing 3.2: How the correct type of a lambda parameter, i.e.,
ParameterDeclaration, is set in Java 11 using the new attribute
inferredType().

3.3.1 Var in Lambda Expressions
Implementing the Java 11 feature of allowing the parameters to lambda expressions to be
declared with var could be done without modifying previous modules. What was needed was
refining the type checking and type error reporting for lambda expressions as well as adding
attributes to support this. The main part of this was giving the variable the type that can
be inferred instead of the declared type as other variables with a regular type identifier does.
This was done with a new inherited attribute inferredType() for the lambda parameters,

27



3. Implementation

which is then used to set the type if the parameter is declared using var. The declaration of
the attribute and how it is used is shown in Listing 3.2. The value of inferredType() was
calculated the same way as lambda parameters missing a type declaration in Java 8.

28



Chapter 4

Evaluation

To address the research questions, the extended ExtendJ compiler needed to be evaluated.
To answer RQ1 we examine the additions and if they could be made modularly in Section 4.1.
In Section 4.2, we describe the problems encountered when compiling real-world projects.
Finally, in Sections 4.3 and 4.4, we evaluate the precision and performance of ExtendJ to
answer RQ2.

4.1 Extendibility
A majority, but not all the additions for Java 9, 10, and 11 could be done modularly. However,
the change to try-with-resources could not be implemented without modifying the Java 7
implementation. This meant modifying seven different files and aspects relating to the parser,
semantic analysis, and code generation. Two additional smaller changes needed to be made to
the Java 8 implementation in the reading of bytecode and an aspect name to make it possible
to extend it to Java 9.

4.1.1 Lines of code

A way of estimating the programming effort when extending a program is by counting the
Source Lines Of Code (SLOC) of a program. For this, we used the SLOCCount program
created by David A. Wheeler [30], which excludes comments and empty lines. The resulting
SLOC counts for the ExtendJ modules 8-11 are shown in Table 4.1, along with the SLOC
counts for the Java files generated for the whole compiler, including all previous modules.

29



4. Evaluation

Module SLOC per Module SLOC Compiled ExtendJ Increase in Generated Code
Java 8 5419 142 003 19 507
Java 9 341 142 126 123
Java 10 400 142 757 631
Java 11 168 142 871 114

Table 4.1: Source Lines Of Code (SLOC) counts for ExtendJ 8-11
modules, SLOC counts for the Java code generated when compiling
ExtendJ for the same module level, and the increase in the SLOC
compared to the previous version of ExtendJ.

4.2 Compiling Real-World Projects
To validate and evaluate the performance of ExtendJ, we needed to compile real-world
projects. We could not find any corpus with Java 9, 10, or 11 projects, so open-source projects
were used instead. GitHub was mainly used for this, where many Java projects are available.
The first step in the selection process was discarding projects requiring Java versions above
Java 11 to compile. Then, we attempted to find two sets of projects, one set where the now
implemented Java features are used and one which only requires Java 8 to build to enable
comparisons between the ExtendJ versions 8-11 and Java versions 8-11. For some projects
requiring Java 12 or above, we attempted to find older versions only needing version 11 or
earlier.

Compiling Java projects is usually done using build systems such as Gradle, Maven or
Ant using commands specified by the projects. Once a relevant project had been identified,
it was downloaded and compiled with a compatible javac version to ensure all dependencies
were available. This was not always successful as sometimes dependencies could not be found,
or something would go wrong during compilation. One reason for this could be that not all
projects specify what Java version is needed, and we used an incompatible version.

We employed three main approaches to ultimately compile projects with ExtendJ. How-
ever, we did not necessarily utilize all three methods at once; rather, we first attempted the
initial approach, and only if it was unsuccessful, did we proceed to the next option. The
first approach was to modify the build scripts to compile the project with ExtendJ instead
of javac. The second was to find the classpath without using a build tool and compile the
project manually, and the third was to substitute the javac executable with a script that
runs ExtendJ. The resulting projects that could be compiled are shown in Table 4.2 with the
corresponding version, SLOC count, description, and compilation method.

These projects together with the ExtendJ and javac executables used are available for
download at https://zenodo.org/record/7924893. The scripts used to measure per-
formance are also included together with instructions on how to run them.

4.2.1 Modifying Build Scripts
Most projects use build scripts for compilation and other tasks, and modifying them would
be an efficient method to be able to compile many projects. For the Gradle build scripts we

30

https://zenodo.org/record/7924893


4.2 Compiling Real-World Projects

task compileWithExtendJ (type: JavaExec ) {
classpath = files(’extendj .jar ’)
main = ’org. extendj . JavaCompiler ’
def files = sourceSets .main.java. srcDirs . collect {

fileTree (it). matching { include ’**/*. java ’
}. files }. flatten (). collect { it. absolutePath }

def runtimeClasspath =
sourceSets .main. runtimeClasspath .asPath

args = [
’-nowarn ’,
’-classpath ’,
runtimeClasspath

] + files
}

compileWithExtendJ { dependsOn compileJava }

Listing 4.1: The Gradle task used to compile projects using Ex-
tendJ.

were able to create the task shown in Listing 4.1. The task would run the ExtendJ compiler
with the same classpath and input files used when compiling the project with javac. This
was used to compile the ExtendJ and Disruptor projects with ExtendJ, but not all Gradle
scripts have the same structure and could not be compiled in this way. We attempted to write
similar tasks for Ant and Maven build scripts, but were unsuccessful. The main issue was
determining the classpath and the set of source files.

4.2.2 Manual Compilation
To compile the projects without a build script we needed to construct the classpath and the
set of Java files to compile. One way we tried doing this was by finding the classpath for an
entry point of a project (e.g., class containing a main method). This means all files needed
to run that entry point are compiled, and its main method can be run. A downside of this is
that there might be multiple entry points in a project, and they might each depend on only a
subset of the full project. An example of this is Java libraries that might have no main entry
point and instead contain several modules. The reason this method was tried was that the
classpath for one Java file could be found using the static analysis tool IntraJ that is based
on IntraCFG [3]. Part of IntraJ’s output when analyzing a Java source file is the classpath
needed to compile it, and with this we were able to compile entry points for Jython and
a few other projects. Because of the limitations of this approach, we prioritized compiling
projects through the build scripts. This was the only method we were able to compile Jython
with, however, it had to be excluded when measuring performance. This was because only
the entry point was recompiled when measuring steady-state performance, as opposed to the

31



4. Evaluation

whole project.
A modified version of this approach involves constructing the classpath for the whole

project and compiling all relevant Java files together with the needed dependencies. Con-
structing the classpath for an entire project is complex, and we could not find any sources
describing this process. However, there exists a small corpus of Java projects needing at most
Java 8 to compile, as well as defined classpaths and dependencies. This allowed us to compile
Fop, Antlr, Gson and Mockito, but was not helpful in finding any Java 9, 10, and 11 projects.
Despite this, these projects were useful for comparing the performance of different ExtendJ
versions with the corresponding javac versions.

4.2.3 Replacing the javac Executable
The final approach we tried to compile projects with ExtendJ was to replace the javac ex-
ecutable with a script that forwards the arguments to ExtendJ. The idea was that all build
scripts could be redirected to use ExtendJ instead of javac by replacing the actual exe-
cutable. Replacing javac with a shell script that calls ExtendJ was straight-forward, but
getting the build scripts to use it was not. The default behavior of the Ant, Gradle and
Maven scripts we tried was to run the Java compiler from within a JVM. The Java compiler
is called through the standard library instead of the javac executable and changing the exe-
cutable has no effect on the compilation. Calling the compiler in this way is how steady-state
performance can be measured, since repeatedly calling the executable creates a new JVM in-
stance each time and no steady-state can be reached. This issue was partially overcome by
again modifying the build scripts to run the javac executable in a new JVM. We were able
to do this to the Gradle build scripts in combination with adding parsing of the arguments
in the executable to make them compatible with ExtendJ.

However, for Ant andMaven build scripts, we were not able to make any similar changes
successfully, meaning this method was not the general method we hoped. Since the projects
we could compile with this method were the same as the ones where we modified only the
build script, we used that method for the evaluation.

Project Version kSLOC Description Compilation Method
Disruptor 4.0.0 18 Messaging library Modified build script
Mockito 4.5.1 20 Mock objects for Java Pre-built classpath
Gson 2.9.0 23 JSON parser Pre-built classpath
Antlr 2.7.2 35 Parser generator Pre-built classpath
Jython 2.2 88 Java Python implementation Manual compilation
Fop 0.95 106 XML to PDF library Pre-built classpath
ExtendJ 11 143 Java compiler Modified build script

Table 4.2: Projects that were successfully compiled with ExtendJ
and how they were compiled.

32



4.3 Validation of Implementation

4.3 Validation of Implementation
The implementation was validated in two main ways, regression tests and compilation of
real-world projects. Using regression tests was a clear choice since ExtendJ already had an
extensive and up-to-date regression test suite that could be extended. Regression tests can
show that the behavior is as expected for a specific data set curated by the developers while
the real-world projects can highlight issues the developers could not foresee and write tests
for.

4.3.1 Regression Tests
When writing regression tests, two important aspects are the run-time of the test-suite and
the code coverage of the tests. Currently, there is no automated system running regression
tests for ExtendJ, meaning tests needs to be run manually and the number of tests needs to
be kept manageable. The number of tests for ExtendJ 8 is currently around 1800, and for
the 9, 10, and 11 modules, we have added 48, 44 and 16 tests, respectively. These tests were
helpful during initial development and for discovering flaws, but they cannot guarantee the
implementation is correct. Compilers are complex programs with an infinite set of inputs
making it impossible to efficiently validate a compiler with only regression tests. However,
since there were issues finding relevant real-world projects for validation, extra care was put
into ensuring the regression test suite was as comprehensive as possible. This was done by
attempting to reach full code coverage of the new features and identifying potential edge
cases.

4.3.2 Validation on Real-World Projects
Compiling large real-world projects using Java 9, 10, and 11 features with the corresponding
ExtendJ versions would ensure the implementation is correct for practical use. To find what
language features are used in the projects we were able to compile, we used the JFeature
analysis tool [5]. It is built using ExtendJ to parse Java programs and works by using JastAdd
collection attributes to gather information about the AST. Due to the modular design of
JFeature and RAGs it was simple to add extra collection attributes for the new language
features. The results of JFeature can be seen in Table 4.3, where all projects and their
number of Java 8-11 features are shown.

4.4 Performance
To compare the extended version of ExtendJ with the javac compiler we measured the
compilation time and memory usage of the projects we could compile. Compilation time
is important during development since a slow compiler can be both frustrating and make
development take more time. Memory usage is also an important metric, since ExtendJ
needs to be able to compile large projects without requiring special hardware.

Compilation time and memory usage are the two performance metrics we were able to
compare for ExtendJ and OpenJDK based Java compilers. All the following measurements

33



4. Evaluation

Project

Java 8 Java 9 Java 10 Java 11

C
on

st
ru

ct
or

R
ef

er
en

ce

C
on

st
ru

ct
or

R
ef

er
en

ce
A

cc
es

s

In
te

rs
ec

ti
on

C
as

tE
xp

r

La
m

bd
a

M
et

ho
dR

ef
er

en
ce

M
et

ho
dR

ef
er

en
ce

A
cc

es
s

D
ef

au
ltM

et
ho

d

D
ia

m
on

dA
cc

es
s

R
es

ou
rc

eU
se

Pr
iv

at
e

in
te

rf
ac

e
m

et
ho

d

Sa
fe

Va
ra

rg
so

n
pr

iv
at

e

Va
r

Fo
re

ac
h

va
r

La
m

bd
a

va
r

Disruptor 17 0 0 118 18 0 5 1 0 0 0 0 0 0
Mockito 3 0 0 37 13 0 10 0 0 0 0 0 0 0
Gson 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Antlr 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Jython 0 0 0 2 0 0 0 0 0 0 0 0 0 0
Fop 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ExtendJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.3: Analysis of compiled projects using JFeature to identify
which Java language features introduced in Java 8-11 are used.

were performed on a benchmark computer running Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-
70-generic x86_64) running on an Intel i7-11700K with 8 cores and fixed 3.5 GHz clock fre-
quency. The computer has 128 GiB DDR4-3200 RAM with a 1 TiB M.2 harddisk. When
measuring performance, the procedures described in Section 2.5.1 were used.

We could not run any javac 10 version on the benchmark computer which means we
could not collect any performance data for javac 10. Also, note that there is no data for
compiling Disruptor using javac 8 and ExtendJ 8 since the project requires javac 9 or
ExtendJ 9 to compile.

4.4.1 Compilation Time
To evaluate the compilation time, we used the method described by A. Georges, D. Buytaert
and L. Eeckhout [28], which we have outlined in Section 2.5.1. In this evaluation, we compiled
each project 16 times in a fresh JVM, and for each JVM, we compiled up to 30 times or when
a coefficient of variation (CoV) threshold of 0.05 for the last 15 runs was reached. The javac
compilers used in the comparison are the included compilers from Oracle JDK 1.8.0.351,
9.0.4, 10.0.2 and 11.0.17. Because of the large spread in project size the results are divided up
into two graphs. Figure 4.1 contains the compilation time for all projects excluding the large
ExtendJ and Fop projects and Figure 4.2 contains the results of ExtendJ, Fop and Antlr, the
largest project in the first graph, to put the results from the large projects into perspective.

The ANOVA method described in 2.5.1 was used to make it possible to determine if there
is a statistically significant difference in compilation time for the ExtendJ compilers. The
results are shown in Table 4.4. We also calculated the 95% confidence intervals of the data
sets, and all lie within 7% of the mean compilation times.

34



4.4 Performance

Figure 4.1: Compilation times for all projects, excluding ExtendJ
and Fop, when using different compilers and compiler versions. The
prefix ss stands for steady-state.

Figure 4.2: Compilation times for the three largest projects when
using different compilers and compiler versions. The prefix ss stands
for steady-state.

4.4.2 Memory Usage
To determine the ExtendJ memory consumption, the memory in use after compiling each
project was measured 30 times, in a fresh JVM each time. Memory in use was calculated using
the code in Listing 4.2 that takes the total memory the JVM currently has access to minus the

35



4. Evaluation

Project Time – Start-Up Time – Steady-State Memory Usage
Disruptor 0.980 0.877 0.987
Mockito 0.848 0.984 0.981
Gson 0.952 0.912 0.988
Antlr 0.858 0.954 0.965
Fop 0.908 0.822 0.974
ExtendJ 0.974 0.958 0.964

Table 4.4: ANOVA results (SSE/SST) for the ExtendJ compilers’
compilation time and memory usage. A value over 0.5 means there
is no statistically significant difference between the data sets.

long inUse = Runtime . getRuntime (). totalMemory () -
Runtime . getRuntime (). freeMemory ();

Listing 4.2: How memory in use was calculated.

amount of memory that is not currently allocated.
The results of this can be seen in Figure 4.3 where the mean memory usage for the projects

when compiled with the different compilers can be seen. To be able to discuss the increase in
memory usage between javac and ExtendJ we identified the proportionally largest increase
for the projects. This was for Gson when comparing javac 9 and ExtendJ 10 and the increase
was with a factor of 5.56.

To test if there is a statistically significant difference of the memory usage between the
different ExtendJ versions we used the ANOVA method described in 2.5.1. The results of
this are shown in Table 4.4.

36



4.4 Performance

Figure 4.3: Memory in use after compiling the projects, ordered left
to right by increasing SLOC count.

37



4. Evaluation

38



Chapter 5

Discussion

In this thesis, we have identified and implemented most of the Java 9, 10, and 11 features
in ExtendJ and attempted to evaluate the implementation. During this, we realized the
complexity of evaluating a Java compiler on real-world projects and explored possible paths
to accomplish this. In this chapter, we first discuss the implementation aspects in Section 5.1.
Then, we discuss the difficulties and insights gained from the attempts to compile real-world
projects in Section 5.2. In Section 5.3, we discuss the performance of ExtendJ and if it affects
the usability of the compiler. Finally, we discuss future work on ExtendJ in Section 5.4.

5.1 Implementation
During the implementation, we aimed to evaluate how modularly extensible ExtendJ is. As
described in Section 4.1, most new features could be added modularly and in only 909 lines
of source code divided between the Java 9, 10, and 11 modules. This is a clear indication that
the design of ExtendJ is modular and allows for new modules to be added efficiently. The
RAGs enable the extensions to be made this modularly and in so few SLOC. The attributes
make it possible to identify what data is available from a node and use that to efficiently
define new attributes. The main feature that could not be added modularly was the extension
to the try-with-resources statement. Java features have generally been implemented with a
high level of abstraction in ExtendJ to allow for extensions, but this was not the case for
the implementation of try-with-resources. With better foresight the design could have been
made extendable from the beginning.

Another important metric is that two graduate-level developers, with the help of a su-
pervisor, were able to understand, modify and extend the compiler in the limited scope of
a master’s thesis. We had previously used the JastAdd system, but had never worked with
the ExtendJ compiler before starting the thesis. However, the implementation is not fully
compliant and there are limitations to it, such as the lack of type projections. There are also
likely more issues that have not been identified because of the lack of real-world projects to

39



5. Discussion

test it on. The limitations of the validation are clear from Figure 4.3 with the almost complete
absence of Java 9-11 features.

5.2 Difficulties Evaluating
The main issue we faced was building real-world projects to evaluate the performance and
precision of ExtendJ. Despite the significant time spent on finding and compiling Java 9,
10, and 11 projects, we had little success, only being able to compile Disruptor. This project
only had a single instance of a Java 9 feature, making it mostly useless for validating the new
features. We were able to find one smaller project that used more of the new features, but
because of the issues with type inference in ExtendJ, we were not able to compile it.

Similarly to how we could not evaluate the performance of the new features, we could
also not validate that the new features had been implemented correctly. We could however
confirm that we were still able to compile projects that do not use the new features. We
found no issues compiling projects with ExtendJ 9, 10, and 11 that we could also compile
with ExtendJ 8. The only exception was the removal of the underscore identifier in Java 9,
which meant some projects could not be compiled with ExtendJ 9-11 without changing the
identifiers first. We did, however, find and report bugs existing in ExtendJ 8 when writing
regression tests aimed at testing the new Java features.

Despite not adding support for modules, we did not encounter any significant issues due
to this when compiling projects. For the few projects using Java 9, 10, and 11 features, we
were able to compile with javac without using the build script, modules were not an issue
when compiling with ExtendJ. The Disruptor project is one example of this since it uses
modules, but could still be compiled both with javac 11 and ExtendJ 11 after removing the
use of modules.

5.3 Performance
The performance of the extended compiler when the new features are not used, does likely not
represent the performance when the features are used. However, it is still possible to discuss
the overhead of the added features. None of the added features add any significant number
of attributes, or what we estimate to be computationally or memory intensive operations.
Considering that the added features are not used for most of the projects in the analysis, it
should be expected that the compilation time and memory usage only increase slightly when
adding support for each new Java version. This increase would be because of new attributes
and the additions to existing attributes.

The ANOVA results from the performance analysis in Section 4.4 show no difference
in compilation time when compiling the projects with ExtendJ 8, 9, 10, or 11. This means
there is no significant compilation time overhead when compiling projects with the different
ExtendJ versions. However, this can only be stated for projects that do not use the features
introduced in Java 9-11.

For all projects, excluding ExtendJ, the compilation time slow-down was below a factor
of 3, for both steady-state and start-up results. However, for ExtendJ, the slow-down was a
factor of 4.0 for steady-state when comparing ExtendJ 8 with javac 8 and at most a factor

40



5.4 Future work

of 3.1 when comparing the other compiler versions. Since ExtendJ is the largest project,
the increasing slow-down factor is concerning for the performance of very large projects.
However, ExtendJ is an outlier and testing this further on projects with SLOC counts at
or above that of ExtendJ is necessary to speak more authoritatively on the matter. A slow-
down factor of around 3 should not limit the usability of ExtendJ on modern computers,
but would make it less viable for performance critical applications.

There are two main points of discussion concerning the memory consumption evalua-
tion. The first one is that the ANOVA results presented in Table 4.4 show no statistically
significant difference between the ExtendJ versions when compiling any project. This means
that it is likely that there is no significant increase in memory usage overhead, despite the
added features. The second one is that the largest difference in memory usage between javac
and ExtendJ was for javac 9 and ExtendJ 10 with a factor of below 6 (5.56) for Gson. A
memory increase by a factor of 6 is concerning and could potentially limit the viability of
ExtendJ for some use cases. When using ExtendJ as a normal Java compiler this should
not be a limiting factor, since even the large projects compiled in this thesis have a memory
usage in a reasonable range. However, when using ExtendJ in a tool such as IntraJ, where
the compilation is done in the background to continuously analyze the code, the memory
difference between javac and ExtendJ could be more concerning.

Another thing of note that can be seen in Figure 4.3 is the gap in memory usage between
javac 8 and javac 9. We speculate that this is due to several memory optimizations between
the release of Java 8 and Java 9. The difference in performance between javac 8 and 9 can also
be seen in Figures 4.1 and 4.2, where the start-up compilation time for javac 8 is seemingly
faster than for its counterparts.

5.4 Future work
There is ongoing work on improving the type inference for ExtendJ, which is the main lim-
itation of the compiler. Finishing this could potentially make it possible to add type projec-
tions to ExtendJ 10 and 11 since they depend on very exact types.

To fully validate ExtendJ 9, 10, and 11 they need to be used to compile real-world projects
using the implemented Java features. This would likely find issues with the implementation
that have not been identified with the regression tests. For ExtendJ 9 to be compliant with
the Java specification support for modules needs to be added. The remaining issue for the
diamond operator described in Section 3.1.5 also needs to be addressed, which might depend
on improved type inference.

For further development on ExtendJ and other Java compilers, a framework for testing
would be helpful. This could consist of a corpus of Java projects combined with information
about what Java features are used, similar to Table 4.3 as well as a way to compile them.
If the framework could enable validation and performance measurements when compiling
projects using Java features from different Java versions, it could simplify development on
Java compilers like ExtendJ.

41



5. Discussion

42



Chapter 6

Conclusions

In this chapter, we answer the research questions based on the discussions in Chapter 5. The
research questions are re-introduced to help readability.

RQ1: How modularly extensible is the ExtendJ Java compiler?
RQ2: What are the limitations in performance and precision compared to the javac
compiler?

RQ1
The main feature of ExtendJ is its extendibility and modularity. To evaluate this, we have
extended ExtendJ to support the majority of Java 9, 10, and 11 features. The new features
could be implemented mostly modularly, with one notable exception being due to the limit-
ing way the feature was originally implemented.

In addition to the modularity, the extensions could be made concisely requiring only a
total of 909 lines of code. Considering this and the fact that ExtendJ could be extended with
multiple features to support a large part of Java 9-11 within the scope of a master’s thesis, we
conclude that ExtendJ is extensible to a high degree.

Since the extensions could be made modularly and that we found ExtendJ to be exten-
sible to a high degree, we conclude that ExtendJ is modularly extensible to a high degree.

RQ2
We have measured the performance of the extended ExtendJ compiler to see if it performs
reasonably well compared to the reference Java implementation. Regarding the performance
limitations for the extended ExtendJ compiler, we can only draw conclusions about the
overhead of the added features, since finding and compiling projects using the features were
mostly unsuccessful. For compilation time, we can conclude that ExtendJ generally runs

43



6. Conclusions

within a factor of 3 both when measuring steady-state and start-up performance, but this
might be increased for larger projects and projects using the Java 9-11 features.

We have also measured memory usage and conclude that ExtendJ’s memory usage is up
to a factor of 6 greater than the reference implementation. The higher memory usage and
compilation time are significant, but should not be a limiting factor on modern systems, as
even large projects can be compiled. It may, however, impact ExtendJ’s usefulness as a static
analysis tool, but no definitive statements can be made concerning this.

44



References

[1] Torbjörn Ekman and Görel Hedin. The JastAdd Extensible Java Compiler. OOPSLA
2007,Montreal, Canada,– ACM Sigplan Notices, 42:1 – 17, 2007.

[2] Torbjörn Ekman and Görel Hedin. The JastAdd system — modular extensible compiler
construction. Science of Computer Programming, 69(1-3):14 – 26, 2007.

[3] Idriss Riouak, Christoph Reichenbach, Gorel Hedin, and Niklas Fors. A Precise Frame-
work for Source-Level Control-Flow Analysis. 2021 IEEE 21st International Working Con-
ference on Source Code Analysis and Manipulation (SCAM), Source Code Analysis and Manip-
ulation (SCAM), 2021 IEEE 21st International Working Conference on, SCAM, pages 1 – 11,
2021.

[4] Torbjörn Ekman and Görel Hedin. Pluggable checking and inferencing of nonnull types
for Java. Journal of Object Technology, 6(9):455 – 475, 2007.

[5] Idriss Riouak, Gorel Hedin, Christoph Reichenbach, and Niklas Fors. JFeature: Know
Your Corpus. 2022 IEEE 22nd International Working Conference on Source Code Analysis
and Manipulation (SCAM), Source Code Analysis and Manipulation (SCAM), 2022 IEEE 22nd
International Working Conference on, SCAM, pages 236 – 241, 2022.

[6] Jesper Öqvist. Implementation of Java 7 features in an extensible compiler. LU-CS-EX:
2012:13. Department of Computer Science, Faculty of Engineering, LTH, Lund Uni-
versity, 2012.

[7] Erik Hogeman. Extending JastAddJ to Java 8. LU-CS-EX: 2014:14. Department of Com-
puter Science, Faculty of Engineering, LTH, Lund University, 2014.

[8] JFlex. https://jflex.de/[Online; accessed 19 April 2023].

[9] Beaver. https://beaver.sourceforge.net/[Online; accessed 19 April 2023].

[10] Jesper Öqvist and Görel Hedin. Extending the JastAdd Extensible Java Compiler to Java
7. In Proceedings of the 2013 International Conference on Principles and Practices of Program-
ming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ ’13, page 147–152,
New York, NY, USA, 2013. Association for Computing Machinery.

45

https://jflex.de/
https://beaver.sourceforge.net/


REFERENCES

[11] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java® Virtual Ma-
chine Specification Java SE 9 Edition, 2017. https://docs.oracle.com/javase/
specs/jvms/se9/jvms9.pdf [Online; accessed 2 March 2023].

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G
Griswold. An overview of AspectJ. In ECOOP 2001—Object-Oriented Programming: 15th
European Conference Budapest, Hungary, June 18–22, 2001 Proceedings 15, pages 327–354.
Springer, 2001.

[13] Donald E Knuth. Semantics of context-free languages. Mathematical systems theory,
2(2):127–145, 1968.

[14] Didier Parigot, Gilles Roussel, Etienne Duris, and Martin Jourdan. Attribute grammars:
a declarative functional language. PhD thesis, INRIA, 1995.

[15] Görel Hedin. An introductory tutorial on JastAdd attribute grammars. Generative and
Transformational Techniques in Software Engineering III: International Summer School, GTTSE
2009, Braga, Portugal, July 6-11, 2009. Revised Papers, pages 166–200, 2011.

[16] Görel Hedin. Reference attributed grammars. Informatica, 24(3):301 – 317, 2000.

[17] Anthony M Sloane, Lennart CL Kats, and Eelco Visser. A pure embedding of attribute
grammars. Science of Computer Programming, 78(10):1752–1769, 2013.

[18] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: An extensible
attribute grammar system. Science of Computer Programming, 75(1):39–54, 2010. Spe-
cial Issue on ETAPS 2006 and 2007 Workshops on Language Descriptions, Tools, and
Applications (LDTA ’06 and ’07).

[19] Harald H Vogt, S Doaitse Swierstra, and Matthijs F Kuiper. Higher order attribute
grammars. ACM SIGPLAN Notices, 24(7):131–145, 1989.

[20] Eva Magnusson and Görel Hedin. Circular reference attributed grammars—their eval-
uation and applications. Science of Computer Programming, 68(1):21–37, 2007.

[21] Rodney Farrow. Automatic generation of fixed-point-finding evaluators for circular,
but well-defined, attribute grammars. ACM SIGPLAN Notices, 21(7):85–98, 1986.

[22] OpenJDK. https://openjdk.org/[Online; accessed 19 April 2023].

[23] Project Jigsaw. https://openjdk.org/projects/jigsaw/[Online; accessed 20
April 2023].

[24] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and Daniel Smith. The
Java® Language Specification Java SE 9 Edition, 2017. https://docs.oracle.com/
javase/specs/jls/se9/jls9.pdf [Online; accessed 2 March 2023].

[25] Brian Goetz. JEP 286: Local-Variable Type Inference, 2016. https://openjdk.org/
jeps/286 [Online; accessed 16 February 2023].

46

https://docs.oracle.com/javase/specs/jvms/se9/jvms9.pdf
https://docs.oracle.com/javase/specs/jvms/se9/jvms9.pdf
https://openjdk.org/
https://openjdk.org/projects/jigsaw/
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://openjdk.org/jeps/286
https://openjdk.org/jeps/286


REFERENCES

[26] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and Daniel Smith. The
Java® Language Specification Java SE 10 Edition, 2018. https://docs.oracle.com/
javase/specs/jls/se10/jls10.pdf [Online; accessed 2 March 2023].

[27] Brian Goetz. JEP 323: Local-Variable Syntax for Lambda Parameters, 2017. https:
//openjdk.org/jeps/323 [Online; accessed 16 February 2023].

[28] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous Java perfor-
mance evaluation. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA, pages 57–76 – 76, Department of Electronics and
Information Systems, Ghent University, 2007.

[29] Edsger Wybe Dijkstra. Notes on Structured Programming, 1970.

[30] David A Wheeler. SLOCCount. https://dwheeler.com/sloccount/[Online; ac-
cessed 18 April 2023].

47

https://docs.oracle.com/javase/specs/jls/se10/jls10.pdf
https://docs.oracle.com/javase/specs/jls/se10/jls10.pdf
https://openjdk.org/jeps/323
https://openjdk.org/jeps/323
https://dwheeler.com/sloccount/


INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-01

EXAMENSARBETE Extending the ExtendJ Java Compiler
STUDENTER Johannes Aronsson och David Björk
HANDLEDARE Idriss Riouak (LTH)
EXAMINATOR Görel Hedin (LTH)

Kan man utöka en Java-kompilator?

POPULÄRVETENSKAPLIG SAMMANFATTNING Johannes Aronsson och David Björk

En kompilator är ett program som kan översätta kod som är enkel att skriva och
förstå till kod som är effektiv att köra. ExtendJ är en Java-kompilator som är specifikt
designad för att vara enkel att utöka och denna uppsats testar detta genom att utöka
den och utvärdera dess prestanda.

Kompilatorer är viktiga inom mjukvaruutveck-
ling. De gör det möjligt för programmerare att
skriva läsbar kod som sedan kompileras till ett
format som gör det möjligt och snabbt för en pro-
cessor att köra programmet. Java är ett modernt
programmeringsspråk och Java-kompilatorer som
javac är komplexa och svåra att modifiera.

För att utforska nya sätt att utveckla kompila-
torer skapades ExtendJ Java-kompilatorn som är
skriven på ett utökningsbart sätt. ExtendJ stöd-
jer just nu Java 4–8 och i detta arbete hade vi som
mål att utöka kompilatorn till Java 9–11. Detta
för att utvärdera om den är utökningsbar och hur
kompilatorns prestanda påverkas av utökningar.
Det finns idag flera forskningsprojekt som använ-
der sig av ExtendJ, och en utökning av kompila-
torn skulle betyda att dessa blir mer aktuella.

Vi byggde ut ExtendJ och analyserade hur kor-
rekt den fungerar samt hur dess prestanda är jäm-
fört med javac. Då kompilatorer är komplexa pro-
gram så måste de testas på existerande projekt.
Om ExtendJ kan kompilera projekt som använ-
der sig av ändringarna i Java 9–11 så är den till
stor del korrekt. Även prestandan måste mätas
på existerande projekt för att kunna dra relevanta
slutsatser.

En stor del av arbetet lades på att hitta och

kompilera projekt som använder tilläggen i Java
9–11. Sådana projekt kunde inte hittas och därför
fick tilläggen testas på Java 4–8 projekt. Vidare
arbete med detta behövs för att kunna analysera
ExtendJ ordentligt.

Vi drog tre slutsatser från undersökningen. Den
första var att ExtendJ är i hög grad utöknings-
bar. Den andra var att kompileringstiden och
minnesanvändningen för den utökade kompilatorn
är oförändrad för Java 4–8 projekt. I Figur 1
visas kompileringstiden för tre av de projekt vi
kunde kompilera. Slutligen drog vi slutsatsen att
kompileringstiden är som mest tre gånger längre
och minnesanvändningen sex gånger högre än för
javac.

Figur 1: Hur kompileringstiden för tre projekt
beror av vilken kompilator och version som an-
vänds.


	Introduction
	Background
	Compiler Architecture and Functionality
	Scanning and Parsing
	Abstract Syntax Trees
	Semantic Analysis
	Code Generation

	ExtendJ
	Attribute Grammars
	Reference Attribute Grammars
	The JastAdd Metacompiler

	The Java Language
	Java 9
	Java 10
	Java 11

	Evaluating Java Programs
	Performance Evaluation
	Validation of a Program


	Implementation
	Java 9 Implementation
	Try-with-resources
	SafeVarargs
	Private Interface Methods
	Remove Underscore as an Identifier
	Diamond Operator

	Java 10 Implementation
	Var Type Identifier

	Java 11 Implementation
	Var in Lambda Expressions


	Evaluation
	Extendibility
	Lines of code

	Compiling Real-World Projects
	Modifying Build Scripts
	Manual Compilation
	Replacing the javac Executable

	Validation of Implementation
	Regression Tests
	Validation on Real-World Projects

	Performance
	Compilation Time
	Memory Usage


	Discussion
	Implementation
	Difficulties Evaluating
	Performance
	Future work

	Conclusions
	References

