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Abstract

As the research in multi-agent domain continues to grow it is becoming more and more important to

investigate the agents’ relations in such systems: not only to reason about agents’ perception of the

world but also about agents’ knowledge of her and others’ knowledge. This type of study is referred

as epistemic reasoning. Epistemic planning i.e., planning with epistemic reasoning, is essential in

many multi-agent domains.

In a variety of fields, e.g., economy, security, justice and politics, reasoning about others’ beliefs

could lead to winning strategies or help in changing a group of agents’ view of the world.

In this thesis we will formalize the epistemic planning problem where the state description is

based on non-well-founded set theory. The introduction of a semantics based on non-well-founded

sets would permit us to characterize the planning problem without using Kripke structures, as the

state-of-the-art suggests, overcoming problematic aspects such as the huge memory requirements.

Moreover, we present the language mAρ where states are represented by possibilities : structures

based on non-well-founded set theory. This representation will allow us to describe the language

through set-based operations and also to exploit some of the results from this field, such as the

concept of bisimulation, to add important features to the multi-agent epistemic community.
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1
Introduction to Planning

The planning problem consists of finding a sequence of actions, starting from an initial state, to

achieve a goal. This sequence of actions is called plan. The planning problem is one of the oldest

and most studied problems of Artificial Intelligence. In literature there are different instances of

the planning problem; all of them sharing the same objective: given an initial configuration of

the environment, find a finite sequence of permitted actions to reach the desired configuration i.e.,

the goal, in the same environment. In this section we will briefly introduce the classical and the

multi-agent planning problem.

1.1 Basic concepts

Let us review some useful notations and definitions used to describe the planning problem. For this

purpose, given its simplicity, we will consider an instance of the well-known Three-Disk Tower of

Hanoi puzzle. The puzzle consists of few simple elements:

Initial state Goal state

A B C A B C

1
2

3

Figure 1.1: Starting and final configurations of the Tower of Hanoi with three disks.



2 1. Introduction to Planning

Agent

E
nvironm

ent

Percepts

Actions

sensors

actions

Figure 1.2: Scheme of an agent interacting with the environment through sensors and actuators.

• Disks of different size with a hole in their centre;

• pegs used to pile the disks;

• an agent that can move the disks.

Furthermore there are some rules that regulate this problem:

• Only one disk at time can be moved;

• a disk can be moved only if it is the top disk of a pile; and,

• a disk can never be placed on top of a smaller one.

Definition 1.1 (Agent) An agent, as defined in [?], is anything that can be viewed as perceiving

its environment through sensors and acting upon that environment through actuators.

In planning an agent is the element of the domain that, by performing operations on the states,

tries to reach a goal. In Figure ?? is illustrated the idea of agent. In the Tower of Hanoi example,

shown in Figure ??, the agent is the entity that moves the disks from one peg to another.

Definition 1.2 (State – Fluent) A state of the domain is a configuration of the world represented

as a conjunction of propositional variables, called fluents.

Example 1.1 Let us consider the state of the Tower of Hanoi in the left of Figure ??. This one

is defined as follow: clear_one, clear_B, clear_C, one_on_two, two_on_three, three_on_A. To
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avoid clutters, in all the examples, the fluents that are negative in the state e.g., ¬clear_A and

¬one_on_three are omitted.

Definition 1.3 (Action) An action is an operation made by an agent that can change the envi-

ronment configuration or her perception of it.

An action can be performed only if certain conditions are satisfied in the current state. These

conditions are called executability conditions.

Example 1.2 (Instance of executable and not executable actions) Let us reconsider the Ini-

tial State in Figure ??. An example of action that cannot be executed is Move(2,3,C), which the

informal semantics is to move the disk 2, currently on 3, in the peg C. The executability conditions

related to this action are clear_two, two_on_three, clear_c, two_small_c but since clear_two is false

in the current state, the action cannot be executed. On the other hand, an example of executable

action is Move(1,2,C) since all its executability conditions are satisfied.

Definition 1.4 (Transition function) Given a set of states S and a set of actions A, a transition

function γ is defined as γ : S ×A ↦→ 2S .

In other words, the transition function γ is a function that, given a state s and an action a, returns

a set of states that can represents the world after the execution of a in s. If a state s does not satisfy

the executability conditions of an action a the result of the application of the transition function

will be the empty set i.e., γ(s, a) = ∅. In Figure ?? is represented the transition function γ for the

Three-Disk Tower of Hanoi puzzle, where a node correspond to a state and an edge between two

nodes represent that it is possible to go from a state to another by applying an executable action.

In Computer Science, a common way to describe the main elements of a problem its through

state-transition system [?]. These can be divided in two macro categories: static and dynamic.

Definition 1.5 (Static state-transition system) A static state-transition system is a triple Σ =

⟨S,A, γ⟩ where

• S = {s0, s1, ...}, is a finite or recursively enumerable set of states,

• A = {a0, a1, ...}, is a finite or recursively enumerable set of actions, and

• γ : S ×A ↦→ 2S is a state transition function.
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Initial State

Goal State

Figure 1.3: Representation of the transition function γ for the Three-Disk Tower of Hanoi Puzzle.

Definition 1.6 (Dynamic state-transition system) A dynamic state-transition system is a

quadruple Σ = ⟨S,A, E , γ⟩ where:

• S and A are as in the static state-transition system, and

• E = {e0, e1, ...}, is a finite or recursively enumerable set of events, and

• γ : S ×A× E ↦→ 2S is a state transition function.

The main difference between these two state-transition systems is that the actions are controlled by

the plan executor (planner), instead the events are transitions that correspond to internal dynamics

of the system and therefore they are not controlled by the planner. The Tower of Hanoi it is a clear

example of static state-transition system since there are no occurrences of internal events.

Now we have all the necessary notions to give the definition of planning problem.

Definition 1.7 (Planning problem) A planning problem [?] for a state-transition system Σ, is

defined as a triple P = ⟨Σ, I,G⟩ where:

• Σ is a state-transition system;

• I = {i0, i1, .., in}, is a finite set of states that represents all the possible initial configurations of

the problem; and
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• G = {g0, g1, ..., gn}, is a finite set of states, called Goal states, that represents all the possible

final configurations of the problem.

The planning problem is to find a solution.

Definition 1.8 (Solution) Given a planning problem P = ⟨Σ, I,G⟩, a solution of P is a sequence

of actions (a1, a2, ..., ak) such that

• ∀s1 ∈ I : γ(s1, a1) ̸= ∅;

• ∀s2 ∈ γ(s1, a1) : γ(s2, a2) ̸= ∅;

...

• ∀sk−1 ∈ γ(sk−2, ak−2) : γ(sk−1, ak−1) ̸= ∅;

• ∅ ≠ γ(sk, ak) ⊆ G.

The entity that tries to solve a planning problem is called planner or solver.

1.2 Classical planning milestones

The study of single-agent domain planners dates back to the early days of Artificial Intelligence, and

several languages were developed to describe the classical planning problem, such as:

• Stanford Research Institute Problem Solver (STRIPS, [?]): the base for most of the languages

that express automated planning problem instances.

• Action description language A [?]: a STRIPS extension that introduces the concept of

conditional effects for actions.

• Action description languages B and C: are extensions of A in which is possible to describe

actions with indirect effects. This is expressed through statics and dynamics laws, where the

first refers to a condition that has to be respected in all the states while the latter represents

conditional actions effects.

• Planning Definition Domain Language (PDDL, [?]): the de-facto standard language for many

planning systems. It could also be viewed as a type of action language.
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Figure 1.4: Representation of a typical multi-agent structure. The system is composed by subsystems
who themselves are compounded by a set of agents that can communicate with each other through
communication channels. Every agent can act and change the environment with some actuators.
The range of influence of an agent action can be limited or unlimited and act throughout the
environment.

1.3 Multi-agent systems

Now we will focus on those systems where there are two or more agents. As said in [?], "There is no

such things as a single-agent system". In fact, even the most trivial real-world system is composed

by a set of sub-systems that have to cooperate and interact with each other to successfully complete

a task. In Figure ?? is depicted an abstract representation of a typical multi-agent system.

Maybe, at first sight, having more than one agent could seem to be a more efficient way to solve

a problem, but most of the time having multiple agents increases the complexity of finding a solution

for a planning problem.

Now we will give a synthetic, but sufficient for the purpose of this thesis, categorization of
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multi-agent systems. A first classification is given in [?]. The authors distinguish the systems

depending on the agents’ coordination method, that can be:

• Centralized: the agents of the system are coordinated by a master process; or

• Distributed: where each agent acts independently.

Moreover, in [?] is provided a categorization based on the cooperation relations between agents,

that can be:

• Cooperative: all the agents acts in synergy to reach the goal; or

• Adversary : the agents have different goals, and they are trying to achieve their own in a

competitive way, even penalizing the other agents.

The last categorization done by [?] is about the capability of an agent to share her own information

about the world. An agent can be:

• Privacy limited : when it is partially o completely not allowed to share information with other

agents e.g., for security reasons; or

• Free: when an agent can share all her knowledge without limitations.

During this thesis, we will focus on multi-agent systems where an agent can influence, not only

the environment but also the beliefs of the other agents. This kind of problems are deeply studied

by the Multi-Agent Epistemic Planning (MEP) community, but there are some details that need

some refinements, such as the state representation or the definition of more efficient equality criteria.





2
Epistemic Reasoning

In this section we will introduce the epistemic logic as a framework for reasoning about knowledge

and beliefs. As defined in [?,?,?], epistemic logic is used to describe the knowledge and belief that

different agents have about the world and about the knowledge/beliefs of each other.

Let AG be a set of agents and let F be a set of fluents. We have that a world is described by a

subset of elements of F : intuitively, those that are ‘True’ in the world.

For each agent ag ∈ AG we associate a modal operator Bag that is used to represents the

knowledge/belief of that agent. Moreover in epistemic logic are also introduced group operators,

such as Eα and Cα, that intuitively represent the knowledge/belief of a group of agents α and the

common knowledge of α respectively. To be more precise we have that:

Definition 2.1 (fluent formulae) A fluent formula is a propositional formula built using the

propositional variables in F and the traditional propositional operators ∧,∨, =⇒ and ¬ . We will

use ⊤ and ⊥ to indicate True and False, respectively.

Definition 2.2 (fluent atom and literal) A fluent atom is a formula composed by just an element

f ∈ F , instead a fluent literal1 is either a fluent atom f ∈ F or its negation ¬f.

Definition 2.3 (belief formula) A belief formula is defined as follow:

• A fluent formula is a belief formula;

• let φ be belief formula and ag ∈ AG, then Bagφ is a belief formula;

1From now on, we will refer to ‘fluent literal’ as fluent.
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• let φ1, φ2 and φ3 be belief formulae, then ¬φ3 and φ1 opφ2 are belief formulae, where op ∈
{∧,∨, =⇒ };

• all the formulae of the form Eαφ or Cαφ are belief formulae, where φ is itself a belief formula

and ∅ ≠ α ⊆ AG.

Intuitively, a belief formula can represent the state of the world (when is also a fluent formula) or the

knowledge/belief of an agent about the world or about the knowledge/belief2 of the other agents.

Example 2.1 (Belief formula) Let us consider the formula Bag1Bag2φ. This formula expresses

that the agent ag1 believes that the agent ag2 believes that φ is true, instead, Bag1¬φ expresses that

the agent ag1 believes that φ is false.

Example 2.2 (Common Knowledge) Let α be a subset of elements of AG and let ag ∈ AG. The

belief formula Cα(¬Bagφ) express that it is common knowledge for the agents in α that ag does not

belief that φ is true.

A classical way of providing semantics for the language of epistemic logic is in terms of Kripke

structures [?]:

Definition 2.4 (Kripke structure) A Kripke structure is a tuple ⟨S, π,B1,. . . ,Bn⟩, such that:

• S is a set of worlds;

• π : S ↦→ 2F is a function that associates an interpretation of F to each element of S;

• for 1 ≤ i ≤ n, Bi ⊆ S × S is a binary relation over S.

A pointed Kripke structure is a pair (M, s) where M is a Kripke structure as defined above, and s ∈ S

represents the entry point of the structure. As in [?], we will refer to a pointed Kripke structure

(M, s) as a state (see Definition ??).

Following the notation of [?], we will indicate with M [S],M [π], and M [i] the components S, π,

and Bi of M , respectively.

Definition 2.5 (entailment w.r.t. a Kripke structure) Given the belief formulae φ,φ1, φ2 and

a pointed Kripke structure (M, s), holds that:
2During this section we will use belief and knowledge interchangeably. We will investigate the difference between

the concept of Knowledge and Belief in Section ??.
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• (M, s) |= φ if φ is a fluent formula and M [π](s) |= φ;

• (M, s) |= Bagiφ if for each t such that (s, t) ∈M [i] it holds that (M, t) |= φ;

• (M, s) |= ¬φ if (M, s) ̸|= φ;

• (M, s) |= φ1 ∨ φ2 if (M, s) |= φ1 or (M, s) |= φ2;

• (M, s) |= φ1 ∧ φ2 if (M, s) |= φ1 and (M, s) |= φ2;

• (M, s) |= Eαφ if (M, s) |= Bagiφ for all agi ∈ α;

• (M, s) |= Cαφ if (M, s) |= Ek
αφ for every k ≥ 0, where E0

αφ = φ and Ek+1
α φ = Eα(E

k
αφ).

Intuitively, Eαφ means that everyone in the group α knows φ, while Cαφ means that it is commonly

known in α that φ is true, which means that all the agents in α knows φ, and all of them knows

that everyone knows φ, ad infinitum.

Example 2.3 (Kripke structure) In Figure ?? is represented the pointed Kripke structure (M, v0)

with F = {p} where M [π](v0) = p and M [π](v1) = ∅.

(M, v0) ≡ ({v0, v1}⏞ ⏟⏟ ⏞
S

, π, {(v0, v1), (v1, v0)}⏞ ⏟⏟ ⏞
B1

, {(v0, v1), (v1, v0), (v0, v0), (v1, v1)}⏞ ⏟⏟ ⏞
B2

, v0)

B1,B2v0 v1

B2
B2

Figure 2.1: Example of a pointed Kripke structure: each circle represents a world in M [S] with its
name written inside it. Labelled edges between worlds denote the belief relations of the structure
and the bold black circle identifies the real world. The interpretation of the world will be given
whenever it is necessary. For example, we write M [π](v0) = {p} to denote that p is true in the world
v0.

An epistemic state is characterized by a pointed Kripke structure that describes the state of the

worlds and the beliefs of the agents. Every state in M [S] represent a different world and the presence
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of multiple worlds identifies uncertainty. To be more precise, given a pointed Kripke structure (M, s)

we have that:

• the actual world (intuitively, the real world) is represented by the pointed state s;

• the relation (s1, s2) ∈ Bi represents that the agent i, even if the actual state is s1, beliefs that

s2 is possible.

2.1 Axioms system and modal logics

Let us denote with LC
AG the language of the belief formulae over the sets F and AG. Furthermore,

we will refer with LAG the language over beliefs formulae that does not allow the use of C. The

language L1 describes single-agent domains (without common knowledge and belief formulae); LAG

the language to reason in multi-agent domains without common knowledge, and finally LC
AG allows

to represent a MEP problem with common knowledge.

Let start analysing the complexity of each one of these languages into the details.

Definition 2.6 (Axioms system [?]) Let R1,...,Rn be n equivalence relations and let φ and ψ be

belief formulae. The axioms system is composed by:

• A1 All the tautologies of propositional calculus

• A2 (Riφ ∧ (Ri(φ =⇒ ψ))) =⇒ Riψ Distribution Axiom

− R1 (φ ∧ φ =⇒ ψ) =⇒ ψ Modus Ponens Rule

− R2 φ =⇒ Riφ Knowldege Generalization Rule

• A3 Riφ =⇒ φ Knowledge Axiom

• A4 Riφ =⇒ RiRiφ Positive Introspection Axiom

• A5 ¬Riφ =⇒ Ri¬Riφ Negative Introspection Axiom

• A6 ¬Ri(⊥) Consistency Axiom

In literature, these axioms are known with different names. In particular, we have that the axiom A2

is called K, A3 is called T, A4 is called 4, A5 is called 5 and the axiom A6 is called D. Domains

that follow distinct combinations of these axioms reason on different modal logics. These logics’

names is simply the concatenation of the axioms that they use. For instance, the modal logic that
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uses the axioms and the rules A1, A2, R1 and R2 is called K; this is the logic that models the

behaviour in the case of single-agent. Instead KD45 is the modal logic that combines the axioms

K, D, 4, 5 and A1 with the rules R1 and R2, while the combination of KT45 and A1 with the two

rules R1 and R2 is called S5.

As said in [?], philosophers and logicians have spent years arguing which of these axioms best

captures the concept of knowledge and beliefs. The question is still open but the axioms S5 and

KD45 seems the most appropriate to represent knowledge and belief, respectively. We will focus on

KD45 since our main objective is to model the agents’ beliefs.

Now we will give a briefly description of the five axioms that we introduced:

• K: express logical omniscience. In other words, the agent’s knowledge is closed under logical

consequence;

• T: has been introduced to capture the difference between knowledge and belief. This is the

case for the epistemic reasoning where agents might believe something that does not reflect

the real world;

• D: introduced to model the notion of belief and expresses that an agent cannot believe false;

• 4: models the concept of positive introspection; this mean that, if Riφ holds, than it is also

true that RiRiφ;

• 5: models the concept of negative introspection; this mean that, if ¬Ri holds, than it is also

true that Ri¬Riφ.

Now we will investigate the properties of the binary relation R and how these properties are

related with the axioms system above.

Definition 2.7 (Equivalence relations) Given a set of elements A, a binary relation R ⊆ A×A
is an equivalence relation if and only if R is:

• Reflexive: ∀a ∈ A : aRa;

• Symmetric: ∀a, b ∈ A : (aRb =⇒ bRa); and,

• Transitive: ∀a, b, c ∈ A : ((aRb ∧ bRc) =⇒ aRc).

Definition 2.8 (Euclidean property) Let R be a binary relation. We say that R on a set S is

Euclidean if, for all s, t, u ∈ S, whenever (s, t) ∈ R and (s, u) ∈ R then (t, u) ∈ R.
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Definition 2.9 (Seriality property) Let R be a binary relation. We say that R on a set S is

Serial if, for all s ∈ S, there is some t such that (s, t) ∈ R.

Lemma 2.1 Given a binary relation R, it holds that

• If R is reflexive and Euclidean, then R is symmetric and transitive.

• If R is symmetric and transitive, then R is Euclidean.

In Table ?? and in Table ?? is described how the properties of the binary relation R and the axioms

of Definition ?? are mutually related.

Property of R Axiom
Reflexive T
Transitive 4
Euclidean 5
Serial D
Symmetric T - 5

Table 2.1: Relation between properties of R and axioms [?].

The encoding of the axioms system in Kripke structures is done as follow: given a Kripke

structure M = ⟨S, π,R1, ...,Rn⟩, for all i ∈ AG and for all φ,ψ ∈ LC
AG , it holds that:

K: M |= (Bagiφ ∧Bagi(φ =⇒ ψ)) =⇒ Bagiψ

T: M |= Bagiφ =⇒ φ

4: M |= Bagiφ =⇒ BagiBagiφ

5: M |= ¬Bagiφ =⇒ Bagi¬Bagiφ

D: M |= ¬Bagi⊥.

A Kripke structure is said to be a K-Kripke (T-Kripke, 4-Kripke, 5-Kripke, D-Kripke, respectively)

if it satisfy the property K(T, 4, 5, D, respectively). Now we just have to axiomatize the groups

operators Eα and Cα. Even if the operator Cα is defined as infinite conjunction, its characterization

is made by a finite set of axioms and rules.
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Modal Properties

logic Reflexive Transitive Euclidean

K
KT
K4
K45
S4
S5

Table 2.2: Properties of the relation R with respect the modal logics K, KT, K4, K45, S4 and
S5.

Definition 2.10 (Axioms for common knowledge)

• C1 Eαφ ⇐⇒
⋀︂
i∈α

Riφ

• C2 Cαφ =⇒ Eα(φ ∧Cαφ)

− RC1 (φ =⇒ Eα(ψ ∧ φ)) =⇒ (φ =⇒ Cαψ)

From now on, with Kn (Tn, KD45n, S4n, S5n) we will indicate the system with n agents and with

KC
n (TC

n , KD45C
n , S4C

n , S5C
n ) we indicate the same system with the addition of the axioms above.

2.2 Complexity

In this section, following [?] we recall the decidability results of the validity problem given a formula

in LC
AG .

Definition 2.11 (Validity of a formula) A formula is valid if and only if it is satisfied under

every interpretation.

The validity problem is decidable if and only if there exists an algorithm that, given as input a

formula φ, will answer yes or no if the formula is valid or not respectively.

Example 2.4 (Valid formula) An instance of a valid formula is p =⇒ (p∨ q). In general, every

tautology is valid.
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In particular, we are interested in determining if a formula φ is valid in a certain class of Kripke

structures (K-Kripke, T-Kripke, 4-Kripke, 5-Kripke, D-Kripke); i.e., if φ is true in every structure

of that class.

Now we will consider the satisfiability problem and we will see how it is related to the validity

one.

Definition 2.12 (Satisfiability) A formula is satisfiable if it is possible to find an interpretation

(model) that makes the formula true.

It is easy to see that satisfiability and validity are complementary problems. In fact, a formula φ is

valid if and only if ¬φ is not satisfiable. Thus we can reduce the validity problem to the satisfiability

one.

Before studying this kind of problem, we briefly introduce the model checking problem that is a

sub-problem of the satisfiability and validity problems.

Definition 2.13 (Model checking w.r.t. Kripke structures) The model checking problem con-

sists in determining if a formula is true in a given Kripke structure.

While in Kripke structures with a finite number of states, the model checking problem is straightfor-

ward, it is not the same for Kripke structures with an infinite number of states. There are several

techniques that exploit abstraction [?] to go from an infinite to a finite number of states or that

impose a limit on the maximum number of steps [?], but it is beyond the scope of this thesis to

investigate Kripke structures with infinite states, therefore, we will focus only on finite Kripke

structures.

Let M = ⟨S, π,B1, ...,Bn⟩ be a Kripke structure and let ||M|| = |S| +
∑︁n

i=1 |Bi|, where |Bi|
represents the number of pairs in Bi, the complexity of the model checking problem is defined as

follows

Proposition 2.1 (Complexity of Model Checking problem w.r.t. Kripke structures)

As said in [?], there is an algorithm that, given a pointed Kripke structure (M, s) and a formula

φ ∈ LC
AG , determines, in time O(||M|| × |φ|), whether (M, s) |= φ.

This proposition holds under the assumption that, the process of determining whether the value of a

propositional variable is true or false in a state, can be computed in constant time. Notice that

the proposition holds regardless of the number of agents and it continues to hold if the problem is

modelled with S5n-Kripke or S4n-Kripke structures.
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Another important result, used to demonstrate that the validity problem is decidable, is the

following

Theorem 2.1 (Consistency of a formula [?]) If a formula φ is Tn- (S4n, S5n, KD45n)-consistent,

then φ is satisfiable in a Tn-Kripke (S4n-Kripke, S5n-Kripke, KD45n-Kripke) structure with at

most 2|φ| states.

With this last result, that gives us an upper bound on the number of Kripke structures to test,

and we can conclude that

Corollary 2.1 The validity problem for Tn-Kripke, S4n-Kripke, S5n-Kripke, KD45n-Kripke is

decidable.

Now, we will consider the complexity of the satisfiability problem in all the modal logic that we

have consider above.

Intuitively the difficulty of determine if a formula is satisfiable is measured by the amount

of time and/or space required to do this. Is not the aim of this thesis to study in detail the

complexity classes therefore we will recall only their basic notions. The complexity classes that we

will take into considerations are: P, NP, PSPACE, EXPTIME and NEXPTIME. An algorithm,

that determine if a formula is satisfiable, belongs to one of this classes if accept or reject the input

in a deterministic polynomial time, nondeterministic polynomial time, deterministic polynomial

space, deterministic exponential time and nondeterministic exponential time, respectively. We also

know that P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME, P ̸= EXPTIME and that

NP ̸= NEXPTIME.

In Table ?? is pointed out that in case of S5n and KD45n, passing from a single-agent to

multi-agent increases the logic complexity. Furthermore, is possible to see that, the addition of the

common knowledge causes a further increase in complexity.

Complexity class Modal logic
NP-complete S51, KD451

PSPACE-complete Kn, Tn, S4n, with n ≥ 1
S5n, KD45n, with n ≥ 2

EXPTIME-complete KC
n , TC

n , with n ≥ 1
S4Cn , S5Cn , KD45Cn , with n ≥ 2

Table 2.3: Complexity of the satisfiability problem for the modal logics obtained by the composition
of the axioms in Definition ?? and the common knowledge operator [?].
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Singleton Chain Tree Graph

Figure 2.2: Graphical representation, from left to right, of public announcement (Singleton), private
announcement (Chain and Tree) and any other type of propositional epistemic action (Graph). The
semantics of these actions is better described in the next section.

Until now we have discussed, in a general way, the complexity of determining if a formula is

satisfiable in certain modal logics. Now we will briefly consider the problem of determining the

existence of a plan considering the complexity of the underlying graph of actions.

Definition 2.14 (Plan existence problem) The plan existence problem consists of determining,

if it exists, a solution for a planning problem P .

In particular, in [?], the authors distinguish three different types of structures depending on

actions:

• Singletons: that corresponds to public announcements of propositional facts;

• Chains and Trees: that corresponds to some kind of private announcements; and,

• Graphs: that capture any propositional epistemic actions.

For each one of these classes of structures we will analyse the complexity for the plan existence

problem considering the preconditions expressive power. In particular, we will consider

• Non-factual actions (changing only beliefs) with propositional preconditions;

• Factual actions (changing beliefs and fluents) with propositional preconditions; and

• Factual actions with epistemic preconditions.
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Underlying Type of actions
action Non factual Factual Factual

structure Propositional
precondition

Propositional
precondition

Epistemic
precondition

Singleton NP-complete
[?]

PSPACE-hard
[?]

PSPACE-hard
[?]

Chain
NP-complete

[?]
OPEN

QUESTION
OPEN

QUESTION

Tree

PSPACE-complete
[?]

OPEN
QUESTION

OPEN
QUESTION

Graph

EXPSPACE
[?]

NON-elementary
[?]

Undecidable
[?]

Table 2.4: Complexity of the plan existence problem [?].
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Axioms Single-agent Multi-agent

K Undecidable Undecidable
KT Undecidable Undecidable
K4 Undecidable Undecidable
K45 Decidable Undecidable
S4 Undecidable Undecidable
S5 Decidable Undecidable

Table 2.5: Decidability results in epistemic planning [?].

In Table ?? is summarised the complexity of the plan existence problem depending on the action

type and on the underlying action structure. As expected, the complexity of the problem increase

as we loose restrictions on the underlying structure.

We will now analyse the decidability of the plan existence problem in an epistemic domain,

considering the axioms systems of Section ??. In particular, we will study the single-agent and the

multi-agent case.

In Table ?? are summarised the results of the decidability for the plan existence problem.

Accordingly with the table above, we can conclude that the plan existence problem into a multi-agent

domain is undecidable. In fact, as shown in [?], the plan existence problem can be reduced to the

halting problem that it is well known to be undecidable.

In this thesis, as already told, we will focus on the epistemic planning problem in a multi-agent

domain. In the next section, we will study a language that will allow us to describe some classes of

MEP problems that, as shown in this section, are undecidable.
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Multi-agent Epistemic Planning

Multi-agent planning and epistemic knowledge have recently gained attention from several research

communities. Epistemic planners are not only interested in the state of the world but also in the

knowledge (or beliefs) of the agents. Such systems, that can reason on the full extent of LC
AG , base

their concept of state on Kripke structures. With respect to classical planning this introduces a

big overhead: in fact to store all the necessary states, solvers require a high amount of memory.

Moreover to perform operations, such as entailment or the application of the transition function,

the states have been represented explicitly. That is why, as the research on epistemic reasoning

advances [?,?,?], it is interesting to analyse alternative representations for the states that could

lead to more efficient operations on the search-space.

Now we will introduce what, in our opinion, is the most complete action language for MEP that

bases its states on the concept of Kripke structure: the action language mA∗. The introduction of

mA∗ is essential since mAρ borrow the syntax and the informal semantics of the actions from it.

3.1 Related works

Over the years different multi-agent languages were designed and implemented and they can be

distinguished by the ability to handle nested and common knowledge. In fact, some problems can

be expressed through less expressive languages and need less powerful, and usually faster, planners.

For example [?,?] deal with problems where dynamic common knowledge and unbounded nested

knowledge are respectively not needed. According to what we have said in Section ??, reason about

other’s knowledge/beliefs introduces a significant increase of complexity On the other hand, to

the best of our knowledge, only few systems [?, ?] can reasoning about epistemic knowledge in
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multi-agent domains without these limitations, i.e., using the language LC
AG .

3.2 The action language mA∗

The mA∗ [?] action language is a generalization of the single-agent action languages, extensively

studied in the literature [?, ?], to the case of multi-agent domains for epistemic planning. The

language has a declarative, English-like syntax and an event model based semantics which permits

to reason about beliefs.

The semantics of mA∗ is based on the assumption that agents are truthful. The language is

built over a signature (AG,F ,A), where AG is a finite set of agents, F is a set of fluents, and A is a

set of actions. The following will be used as working example through the thesis:

Example 3.1 (Three Agents and the Coin Box) Three agents, A, B, and C, are in a room

where in the middle there is a box containing a coin. The planning problem is informally described

by:

• Domain description:

– One needs the key to open the box;

– In order to learn whether the coin lies heads or tails up, an agent can peek into the box,

but this require the box to be open;

– If one agent is looking at the box and a second agents peeks into the box, then the first

agent will observe this fact and will be able to conclude that the second agent knows the

status of the coin. On the other hand, the first agent’s knowledge about which face of the

coin is up does not change.

– Distracting an agent causes her to not look at the box;

– Signaling an agent causes such agent to look at the box;

– Announcing that the coin lies heads or tails up will make this common knowledge among

the agents that are listening.

• Initial state:

– The box is locked;

– It is common knowledge that agent A has the key of the box;
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– None of the agents know whether the coin lies heads or tails up;

• Goal state:

– Agent A would like to know whether the coin lies heads or tails up. She would also like

to let agent B knowing that she knows this fact. However, she would like to keep this

information secret from C.

• Possible plan: This can be achieved by: i) Distracting C from looking at the box; ii) Signaling

B to look at the box if B is not looking at it; iii) Opening the box; and iv) Peeking into the box.

For this domain, we have that AG = {A,B,C}, while the set of fluents F consists of:

• heads: the coin lies heads up;

• key(ag): agent ag has the key of the box;

• opened: the box is open; and

• look(ag): agent ag is looking at the box.

Let ag ∈ AG, the set of actions A comprises:

• open: an agent opens the box;

• peek: an agent peeks into the box;

• signal(ag): an agent signals to agent ag to look at the box;

• distract(ag): an agent distracts agent ag;

• shout_coin: an agent announces the position of the coin.

3.2.1 Syntax

In [?], the authors distinguish between three types of actions in the following way:

• Ontic action (also called World-altering): used to modify certain properties (i.e., fluents) of

the world, e.g., the action open or distract(ag) of Example ??.

• Sensing action: used by an agent to refine her beliefs about the world, e.g., the action peek.
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• Announcement action: used by an agent to affect the beliefs of other agents. e.g., in Example ??

the action shout_coin.

Given an action instance a ∈ AI, where AI is the set of all the possible action instances A×AG,

a fluent literal f ∈ F , a fluent formula ϕ and a belief formula φ we introduce the syntax adopted in

mA∗.

Executability conditions are captured by statements of the form:

executable a if φ (3.1)

where φ is referred as the precondition of a.

For a world-altering actions a, e.g., distracting an agent, we have the following statement that

captures the changes made by the action:

a causes f if φ (3.2)

For the sake of readability, if φ = ⊤ then the executability condition "if ψ" is omitted.

The statement that captures the execution of a sensing action, such as looking into the box, is

the following one:

a determines f (3.3)

Finally announcement actions are expressed as follows:

a announces ϕ. (3.4)

Example 3.2 Let ag, ag1, ag2 ∈ {A,B,C}. The actions of the Example ?? are specified as follow,:

• Executability conditions:

executable open⟨ag⟩ if key(ag)

executable peek⟨ag⟩ if opened ∧ look(ag)

executable shout_coin⟨ag⟩ if (Bag(heads) ∧ heads) ∨ (Bag(¬heads) ∧ ¬heads)

executable signal(ag1)⟨ag2⟩ if look(ag2) ∧ ¬look(ag1)

executable distract(ag1)⟨ag2⟩ if look(ag1) ∧ look(ag2)
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Action type Full observers Partial Observers Oblivious
World-altering

Sensing
Announcement

Table 3.1: Action type and observability relations.

• Ontic actions:

open⟨ag⟩ causes opened

signal(ag1)⟨ag2⟩ causes look(ag1)

distract(ag1)⟨ag2⟩ causes ¬look(ag1)

• Sensing action:

peek⟨ag⟩ determines heads

• Announcement action:

shout_coin⟨ag⟩ announces heads

In multi-agent domains the execution of an action might change or not the beliefs of an agent. This

because, in such domains, each action instance associates an observability relation to each agent.

For example the agent C that becomes oblivious as distracted by the agent A, is not able to see the

execution of the action open⟨A⟩. On the other hand, watching an agent executing a sensing or an

announcement action can change the beliefs of who is watching, e.g., the agent B, who is watching

the agent A sensing the status of the coin, will know that A knows the status of the coin without

knowing the status herself. In Table ?? are summarized the possible observability relations for each

type of action.

More formally, an agent, with respect to an action can be a
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• full observer : completely aware of the action and its effects;

• partial observer : aware of the action but not of its effects; and,

• oblivious: completely unaware of the action execution.

Partial observability for world-altering action is not admitted as, whenever an agent is aware of

the execution of an ontic action, she must knows its effects on the world as well.

The observability relations are captured by the following statements:

ag observes a if φ (3.5)

ag aware_of a if φ (3.6)

The first statement indicates that the agent ag is full observer of the action a if φ holds, instead the

second one indicates that the agent is a partial observer of a if the observability condition is true.

Example 3.3 The observability relations of the actions defined in Example ??:

ag1 observes open⟨ag1⟩ if ⊤

ag2 observes open⟨ag1⟩ if look(ag2)

ag3 observes shout_coin⟨ag1⟩ if ⊤ For ag3 ∈ AG

ag1 observes distract(ag2)⟨ag1⟩ if ⊤

ag2 observes distract(ag2)⟨ag1⟩ if ⊤

ag1 observes signal(ag2)⟨ag1⟩ if ⊤

ag2 observes signal(ag2)⟨ag1⟩ if ⊤

ag1 observes peek⟨ag1⟩ if ⊤

ag2 aware_of peek⟨ag1⟩ if look(ag2)

where ag1 and ag2 are different agents in AG.

Next, we will give the definition of frame of reference. Frames are useful as they represent the

observability relations in a given state, and we will exploit them to give a more concise definition of

update models and of the transition function.

Definition 3.1 (Frame of reference) Given an state (M, s) and an action a, let us define the

following sets
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• FD(a,M, s) = {ag ∈ AG|[ag observes a if φ] ∈ D ∧ (M, s) |= φ}

• PD(a,M, s) = {ag ∈ AG|[ag aware_of a if φ] ∈ D ∧ (M, s) |= φ}

• OD(a,M, s) = AG\(FD(a,M, s) ∪ PD(a,M, s))

where FD(a,M, s), PD(a,M, s) and OD(a,M, s) represents the sets of agents that are fully observant,

partially observant and oblivious of the execution of a in the state (M, s), respectively. We call the

tuple (FD(a,M, s), PD(a,M, s), OD(a,M, s)) frame of reference.

Definition 3.2 (Domain in mA∗) A domain in mA∗ is a set of statements of the form (??) -

(??).

As underlined in [?], an mA∗ domain cannot contain two statements that specify incompatible

effects of an action occurrence such as

open⟨ag⟩ causes opened if ⊤ open⟨ag⟩ causes ¬opened if ⊤.

If a domain, contains incompatible statements, it is said to be inconsistent. In this thesis we will

focus our attention only on consistent domains.

In mA∗ the initial state is encoded through the following statement

initially φ (3.7)

where φ is a belief formula. Intuitively, this statement says that φ is true in the initial state. One of

the biggest limitation in mA∗ is that the initial state (M, s) must be a finitary S5-state.

Definition 3.3 (Initial finitary S5-state [?]) Given a Kripke structure M and a state s, we have

that (M, s) is an initial S5-state iff (M, s) is an initial state and M is a S5 Kripke structure. In

other words, the initial state must contains only formulae of the form:

i) φ; All the agents knows that φ holds in the actual world

ii) C(Bagφ); All the agents knows that ag know φ

iii) C(Biφ ∨Bi¬φ); and, All the agents knows that ag know the truth value of φ

iv) C(¬Biφ ∧ ¬Bi¬φ). All the agents knows that ag does not know the truth value of φ.
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Example 3.4 Representation of the initial state of the Example ??:

intially C(key(A))

intially C(¬key(B))

intially C(¬key(C))

intially C(¬opened)

intially C(¬Bag(heads) ∧ ¬Bag(¬heads)) with ag ∈ AG

intially C(look(ag)) with ag ∈ AG

initially heads

This set of statements encode exactly the initial state of Example ??.

3.2.2 Update models and transition function

Epistemic planning relies on the notion of update model. Update models has been introduced by

[?,?] to describe a transformation of Kripke structures. Intuitively, an update model represents

different views of an action occurrence depending on the observability of the agents. Now we will

give the definition, as in [?], for each kind of actions of the relative update model.

Definition 3.4 (LC
AG-substitution) An LC

AG-substitution is a set of substitutions {p1/φ1, ..., pk/φk}
where each pi is a fluent in F and each φi ∈ LC

AG.

Definition 3.5 (Update Model) Let AG be a set of n agents. An update model Ξ is a tuple

⟨E ,R1, ...,Rn, pre, sub⟩

where

• E is a set, whose elements are called events;

• each Ri is a binary relation on E;

• pre : E ↦→ LC
AG is a function that maps each event e ∈ E to a formula in LC

AG; and

• sub : E ↦→ SUBLC
AG

is a function that maps each event e ∈ E to a substitution in SUBLC
AG

,

where SUBLC
AG

is the set of all the LC
AG-substitutions.
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An update instance ω is a pair (Ξ, e) where Ξ is an update model and e ∈ E is the designated event.

Intuitively, the function pre defines the action preconditions while sub specifies the changes of fluent

values after the execution of an action.

Now, for each kind of actions, i.e., ontic, sensing and announcement, we define the relative

update model as follows

Definition 3.6 (Update model for ontic actions) Given an ontic action a with precondition ψ

and a frame of reference ρ = (F, ∅, O), the update model for a is the following tuple

⟨E ,R1, ...,Rn, pre, sub⟩

where

• E = {σ, ε};

• Ri = {(σ, σ), (ε, ε)} for i ∈ F and Ri = {(σ, ε), (ε, ε)} for i ∈ O;

• pre(σ) = ψ ∧ pre(ε) = ⊤;

• sub(ε) = ∅ and sub(σ) = {p/(Ψ+(p,a∨(p∧¬Ψ−(p,a)|p∈F)} where

Ψ+(p, a) =
⋁︂

{φ|[a causes p if φ]}

and

Ψ−(p, a) =
⋁︂

{φ|[a causes ¬p if φ]}.

We indicate with ω(a, ρ) the update model for a ontic action and with (ω(a, ρ), {σ}) the relative

instance.

We will give now the definition of the update model for sensing actions. For the sake of readability,

we indicate with Sensed(a) the fluent that the agent has perceiving.

Definition 3.7 (Update model for sensing actions) Let a be a sensing action with Sensed(a)={f},
ψ be the precondition a and ρ = (F, P,O) be a frame of reference. The update model for a is given

by the following tuple

⟨E ,R1, ...,Rn, pre, sub⟩

where
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• E = {σ, τ, ε};

• For each i ∈ {1, ..., n}, Ri is define as follows

Ri =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(σ, σ), (τ, τ), (ε, ε)} if i ∈ F

{(σ, σ), (τ, τ), (ε, ε), (σ, τ), (τ, σ)} if i ∈ P

{(σ, ε), (τ, ε), (ε, ε)} if i ∈ O

• The function pre is defined by

pre(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ ∧ f if x = σ

ψ ∧ ¬f if x = τ

⊤ if x = ϵ

• ∀x ∈ E : sub(x) = ∅.

We indicate with ω(a, ρ) the update model for a sensing action and with (ω(a, ρ), {σ, τ}) the relative

instance.

Finally, we can give the last update models that is for announcement actions.

Definition 3.8 (Update model for announcement actions) Let ψ and ρ as above and let a

be an announcement action that announces the fluent φ. The update model for a is the following

tuple

⟨E ,R1, ...,Rn, pre, sub⟩

where

• E = {σ, τ, ε};

• For each i ∈ {1, ..., n}, Ri is define as follows

Ri =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(σ, σ), (τ, τ), (ε, ε)} if i ∈ F

{(σ, σ), (τ, τ), (ε, ε), (σ, τ), (τ, σ)} if i ∈ P

{(σ, ε), (τ, ε), (ε, ε)} if i ∈ O



3.2. The action language mA∗ 31

• The function pre is defined by

pre(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ ∧ φ if x = σ

ψ ∧ ¬φ if x = τ

⊤ if x = ϵ

• ∀x ∈ E : sub(x) = ∅.

We indicate with ω(a, ρ) the update model for an announcement action and with (ω(a, ρ), {σ}) the

relative instance.

It is immediate to see that the update model for a sensing action is structurally identical to the

update model for an announcement action. The only difference, as specified in [?], is about the set

of designated events in the update instance for each type of actions.

Definition 3.9 (Updates through update models) Let M be a Kripke structure and

Ξ = ⟨E ,R1, ...,Rn, pre, sub⟩ be an update model. We define M ′ = M ⊗ Ξ as the updated Kripke

structure obtained from M through the update model Ξ, where:

1. M ′[S] = {(s, ξ) | s ∈M [S] ∧ ξ ∈ E ∧ (M, s) |= pre(ξ)};

2. ((s, ξ), (s′, ξ′)) ∈M ′[i] iff (s, ξ), (s′, ξ′) ∈M ′[S], (s, s′) ∈M [i] ∧ (ξ, ξ′) ∈ Ri;

3. ∀(s, ξ) ∈M ′[S] ∧ f ∈ F ,M ′[π]((s, ξ)) |= f iff {f/φ} ∈ sub(ξ) ∧ (M, s) |= φ.

Finally, we can report the mA∗ transition function ΦD.

Definition 3.10 (Transition function ΦD) Let (M, s) be a state and let a ∈ AI . The result of

executing a in (M, s) is a set of states, denoted by ΦD(a, (M, s)) defined as follow:

• If a is not executable in (M, s) then ΦD(a, (M, s)) = ∅

• If a is executable in (M, s) and (E , Ed) is the representation of the occurrence of a in (M, s)

then

– ΦD(a, (M, s)) = (M, s)⊗ (E , Ed) if a is an ontic action instance.

– ΦD(a, (M, s)) =M [FD(a,M, s), f]⊗ (E , Ed) if a is a sensing action instance that senses f

and (M, s) |= f;
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– ΦD(a, (M, s)) =M [FD(a,M, s), ϕ]⊗ (E , Ed) if a is an announcement action instance that

announces ϕ.

Next, we characterize the epistemic planning problem and finally, we will give the definition of

solution for these kinds of problems.

Definition 3.11 (Epistemic planning problem) An epistemic planning problem is a triple

(Σ, s0, φd) where Σ = (S,A, γ) is a static state-transition system (see Definition ??), s0 ∈ S

and φd is a formula in LC
AG.

A solution (there can be more than one solution) of an epistemic planning problem is a sequence

of actions a1, a2, ..., an such that s0 ⊗ a1 ⊗ a2 ⊗ ...⊗ an |= φd.

Example 3.5 (Execution of ∆c = distract(C)⟨A⟩; open⟨A⟩; peek⟨A⟩) In this example we will

show the execution of the action instance sequence ∆c = distract(C)⟨A⟩; open⟨A⟩; peek⟨A⟩ that

leads to the desired goal, in the domain expressed in Example ??. For each state we will represent

the relative Kripke structure.

The observability relations of each action instance in ∆c is expressed in the following Table:

distract(C)⟨A⟩ open⟨A⟩ peek⟨A⟩

FD A, B, C A, B A

PD - - B

OD - C C

Table 3.2: Observability relations of the actions instances in ∆c.

As already said, the initial state is represented by the set of statement reported in Example ??. In

Figure ?? is represented the pointed S5-Kripke structure that encodes the initial state. Intuitively, we

have that none of the agents knows if the coin lies tails or heads up, therefore no one can distinguish

the states (M0, s0) and (M0, s1).
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A,B,Cs0 s1

A,B,C A,B,C

M0[π](s0) = {look(ag), key(A)}

M0[π](s1) = {look(ag), key(A), heads}
where ag ∈ {A,B,C}.

Figure 3.1: The initial Kripke structure (M0, s0).

In Figure ?? is represented the Kripke structure (M0, s0) after the execution of distract(C)⟨A⟩.
It is immediate to see that (M0, s0) and (M1, p0) are two structurally identical Kripke structures.

The main difference is about the interpretation function π. Before the execution of the ontic action

instance distract(C)⟨A⟩, all the agents were looking the box while after the execution we have that

only the agent A and B are looking the box.

A,B,Cp0 p1

A,B,C A,B,C

M1[π](p0) ={look(A), look(B), key(A)}

M1[π](p1) ={look(A), look(B), key(A), heads}

Figure 3.2: The Kripke structure (M1, p0), obtained after the execution of distract(C)⟨A⟩ in
(M0, s0) (Figure ??).

In the next picture is represented the state obtained after the execution of open⟨A⟩ in (M1, p0).

This state represents the situation in which the agent C is not looking at the box and she does not

know that the box was opened by the A and that B was a full observer of that.
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A,B,Cp0 p1

A,B,C A,B,C

A,Bq0 q1

A,B A,B

C

C C

C

M2[π](q0) = {look(ag), key(A), opened}

M2[π](q1) = {look(ag), key(A), opened, heads}

where ag ∈ {A,B}.

M2[π](p0) =M1[π](p0)

M2[π](p1) =M1[π](p1)

Figure 3.3: The Kripke structure (M2, q0), obtained after the execution of open⟨A⟩ in (M1, p0)
(Figure ??).

A,B,Cp0 p1

A,B,C A,B,C

Br0 r1

A,B A,B

C

C C

C

M3[π](r0) = {look(ag), key(A), opened}

M3[π](r1) = {look(ag), key(A), opened, heads}

where ag ∈ {A,B}.

M3[π](p0) =M1[π](p0)

M3[π](p1) =M1[π](p1)

Figure 3.4: The Kripke structure (M3, r0), obtained after the execution of peek⟨A⟩ in (M2, 0).
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Finally, in Figure ?? is represented the situation in which i) A knows that the coin inside the

box lies heads up; ii) B believes that A knows the coin status; and iii) C is still thinking to be in the

state in which the box is closed and none of the agents know whether the coin lies heads or tails up.

It is easy to see, that the desired goal, expressed through the following formulae, holds in (M3, r0):

• (M3, r0) |= BA¬heads ∧BA

(︂
BB(BAheads ∨BA¬heads)

)︂
• (M3, r0) |= BB(BAheads ∨BA¬heads) ∧ (¬BBheads ∧ ¬BB¬heads)

• (M3, r0) |= BC

(︂⋀︁
ag∈{A,B,C} (¬Bagheads ∧ ¬Bag¬heads)

)︂
• (M3, r0) |= C{A,B}(¬BBheads ∧ ¬BBheads)





4
Introduction to Possibilities

In this section, we will give the necessary notions to introduce the language mAρ: an action

description language based on the syntax and semantics of mA∗ with the only difference that mAρ

exploits possibilities to represent a state. The concept of possibility was introduced by Gerbrandy and

Groeneveld in [?] to represent multi-agent information change and it is based on non-well-founded

sets theory [?]. An interesting result reported in [?] is that there is a connection between Kripke

structures and possibilities, in particular, a possibility corresponds to the whole class of bisimilar

Kripke structures.

We will start by giving the basic notions about non-well-founded sets theory. We will then

introduce the concepts of possibility and bisimulation.

4.1 Non-well-founded sets theory

The concept of non-well-founded sets was introduced and formalised for the first time by Dimitri

Mirimanoff in [?], but for the Zermelo-Fraenkel-Cantor Foundation Axiom (FA) it was put aside.

Sixty years later, Peter Aczel in [?] formalized a unified theory and showed how non-well-founded

sets can be used in communication theory. In particular, he investigated the Anti-foundation Axiom

(AFA), that contradicts the FA.

The non-well-founded sets theory has been used in different fields, in particular, i) Aczel used the

AFA to build a model of a Milner’s Synchronous Calculus of Communicating Systems (SCCS) [?];

ii) Jon Barwise in [?] used non-well-founded sets to study mutual information (common knowledge

in distributed systems); and iii) Gerbrandy and Groeneveld in [?] used non-well-founded sets to

represent epistemic logic. Now we will briefly introduce the basics of this set theory following [?]
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0 1 2 3

(a) Pictures of von Neumann ordinals where 0 = ∅;
1 = {∅}; 2 = {∅, {∅}}; 3 = {∅, {∅}, {∅, {∅}}}.

3

2

1

210

0

(b) Alternative Pictures of von Neumann
ordinals 2 and 3.

Figure 4.1: Well-founded sets represented through graphs [?].

and then we will use this concept to introduce possibilities.

We will start from the well-founded sets theory.

Definition 4.1 (Well-founded set) Let E be a set, E′ one of its elements, E′′ any element of E′,

and so on. A descent is the sequence of steps from E to E′, E′ to E′′, etc. . . . A set is well-founded

(or ordinary) when it only gives rise to finite descents.

This definition is captured by the Foundation Axiom

∀a(∃x(x ∈ a)) =⇒ ∃x(x ∈ a ∧ ∀y(y ∈ x =⇒ ¬(y ∈ a)))

Well-founded set theory states that all the sets in the sense of Definition ?? can be represented in

the form of graphs, called pictures, (as shown in Figure ??).

To formalize this concept of picture of a set however it is necessary to introduce the concept of

decoration:

Definition 4.2 (Decoration and picture)

• A decoration of a graph G(V,E ) is a function δ that assigns to each node n ∈ V a set δn
in such a way that the elements of δn are exactly the sets assigned to successors of n, i.e.,

δn = {δn′ | (n, n′) ∈ E}.

• If δ is a decoration of a pointed graph (G, n), then (G, n) is a picture of the set δn.

Moreover, in well-founded set theory, it holds the Mostovski’s lemma:

Lemma 4.1 (Mostovski’s collapsing lemma) Each well-founded graph1 is a picture of exactly

one set.
1A well-founded graph is a graph that doesn’t contain an infinite path n → n′ → n′′ → . . . of successors.
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(a) Standard picture Ω. (b) Unfolding of the picture of Ω.

Figure 4.2: Representation of the non-well-founded set Ω = {Ω}.

On the other hand in [?] a non-well-founded, or extraordinary set in the sense of Mirimanoff, is a

set that respects the following definition

Definition 4.3 (Non-well-founded set) A set is non-well-founded (or extraordinary) when

among its descents there are some which are infinite.

In fact, when the ZFC(FA) is substituted by the Anti-Foundation Axiom (AFA), expressed by

Aczel in [?] as ‘Every graph has a unique decoration’ consequently the following sentences becomes

true:

• Every graph is a picture of exactly one set (AFA as is formulated in [?]);

• Non-well-founded sets exist given that a non-well-founded pointed graph has to be a picture of

a non-well-founded set.

In [?, ?] is pointed out how non-well-founded sets can also be expressed through systems of

equations. This concept will help us to formalize the notion of state in our action language. A quick

example of this representation can be derived by the set Ω = {Ω} (Figure ??). We can, in fact,

informally define this set by the (singleton) system of equations x = {x}.
Before defining in detail what a system of equations is, we have to introduce the concept of

atoms or as in [?] urelements:

Definition 4.4 (atoms) In set theory, atoms (or urelements) are objects that are not sets and

have no further set-theoretic structure.

Systems of equations and their solutions are described more formally, as follows

Definition 4.5 (System of equations [?]) For each class of atoms2 X a system of equation in

X is a class τ of equations x = X, where x ∈ X and X ⊆ X , such that τ contains exactly one equation

x = X for each x ∈ X . A solution to a system of equations τ is a function δ that assigns to each

x ∈ τ(X )3 a set δx such that δx = {δy | y ∈ X}, where x = X is an equation of τ . If δ is the solution
2Objects that are not sets and have no further set-theoretic structure.
3τ(X ) denotes the class of atoms X in which τ is described.
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to a system of equations τ , then the set {δx | x ∈ τ(X )} is called the solution set of that system.

Since both graphs and systems of equations are representations for non-well-founded sets, it

is natural to investigate their relationships. In particular it is interesting to point out how from

a graph G(V,E) it is possible to construct a system of equation τ and vice-versa. The nodes in

G, in fact, can be the set of atoms τ(X ) and, for each node v ∈ V , an equation is represented by

v = {v′ | (v, v′) ∈ E}. Since each graph has a unique decoration, each system of equations has a

unique solution. This is also true when we consider bisimilar systems of equations. In fact we can

collapse them into their minimal representation thanks to the concept of maximum bisimulation [?].

Bisimilar labelled graphs (or Kripke structures) have therefore a unique solution as well since we

collapse their representations into the minimal one.

4.2 Bisimulation

Bisimulation is an important notion in modal logic. In particular, bisimulation can be exploited to

characterize Kripke models with ‘the same behaviour ’. This kind of formalism is used in several

fields such as, for example, Computer Science, Philosophical Logic and Set Theory.

It is not the aim of this thesis to study in depth this kind of formalism, therefore, we will give

only the basics notions.

Definition 4.6 (Bisimulation [?]) Given two pointed Kripke structures4 (M1, s0) and (M2, t0)

and a set of propositional variables P, the relation R ⊆ S1 × S2 is a bisimulation if and only if for

all s ∈ S1 and t ∈ S2, if (s, t) ∈ R then:

• Atom: s ∈ π1(p) ⇐⇒ t ∈ π2(p), for all p ∈ P;

• Forth: For all s′ such that (s, s′) ∈ R1 there exists a t′ such that (t, t′) ∈ R2 and (s′, t′) ∈ R;

• Back: For all t′ such that (t, t′) ∈ R2 there exists a s′ such that (s, s′) ∈ R1 and (t′, s′) ∈ R;

Two Kripke structures (M1, s0) and (M2, t0) are bisimilar if and only if there exists a bisimulation

between M1 and M2 starting from s0 and t0.

Example 4.1 (Bisimilar pointed Kripke structures) In Figure below are represented two dif-

ferent pointed Kripke structures (M1, s0) (left) and (M2, t0) (right). It is easy to see that these
4S1,S2 are the set of worlds, π1, π2 are the interpretation functions, and R1, R2 are the accessibility relations of

M1 and M2, respectively.
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two Kripke structures are structurally different but bisimilar since there exists a relation ≃=

{(s0, t0), (s1, t1), (s1, t2)} that is a bisimulation.

A,B

C
s0 s1 t0

t1

t2

A

B

C

C

p

p

p

q q

Figure 4.3: Graphical representation of two bisimilar pointed Kripke structures. The wavy edges
represent the bisimulation relation ≃.

On the other hand, if we remove the edge (t0, t2) from (M2, t0), we obtain that the two Kripke

structures are no more bisimilar.

Moreover, given two pointed Kripke structures (M1, s0) and (M2, t0) it is easy to see that

Corollary 4.1 (Truth between bisimilar Kripke structures)

(M1, s0) ≃ (M2, t0) ⇐⇒
(︂
∀φ ∈ LC

AG : (M1, s0) |= φ ⇐⇒ (M2, t0) |= φ
)︂
.

4.3 Possibilities

Now, following [?], we will introduce the concept of possibility

Definition 4.7 (Possibility [?]) Let AG be a set of agents and P a set of propositional variables:

• A possibility u is a function that assigns to each propositional variable f ∈ P a truth value

u(f) ∈ {0, 1} and to each agent ag ∈ AG an information state u(ag) = σ.

• An information state σ is a set of possibilities.
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In Section ?? we will use this concept to describe a ‘state’ of the epistemic planning problem.

The intuition behind this idea is that a possibility u is a possible interpretation of the world and of

the agents’ beliefs; in fact u(f) specifies the truth value of the fluent f in u and u(A) is the set of all

the interpretations that the agent A considers possible in u.

Definition 4.8 (Equations for possibilities) Given a set of agents AG and a set of propositional

variables P, a system of equations for possibilities in a class of possibilities X is a set of equations

such that for each x ∈ X there exists exactly one equation of the form x(f) = i, where i ∈ {0, 1}, for

each f ∈ P, and of the form x(ag) = X, where X ⊆ X , for each ag ∈ AG.

A solution to a system of equations for possibilities is a function δ that assigns to each atom x a

possibility δx in such a way that if x(f) = i is an equation then δx(f) = i, and if x(ag) = σ is an

equation, then δx(ag) = {δy | y ∈ σ}.

Example 4.2 (Example of a possibility) Instance of a system of equations. We have that r, g

and b are possibilities, F = {p, q} and AG = {A,B}.

r(p) = 1 g(p) = 1 b(p) = 0

r(q) = 0 g(q) = 1 b(q) = 0

r(A) = {g} g(A) = {g} b(A) = ∅

r(B) = ∅ g(B) = {b} b(B) = ∅

Definition 4.9 (Labelled graph [?]) Given a set of propositional variable P and a set of agents

AG, a labelled graph is a triple G =

(︃
G,

(︃
A−−−−→

A∈AG

)︃
, V

)︃
where G is a set of nodes, for each A ∈ AG,

A−−→⊆ G×G is a relation over G, and V is a function that assigns to each p ∈ P a subset of G.

Moreover a possibility can be pictured as a decoration of a labelled graph and therefore as a unique

solution to a system of equations for possibilities.

Definition 4.10 (Decoration of a labelled graph) Given a labelled graph G =

(︃
G,

(︃
A−−−−→

A∈AG

)︃
, V

)︃
,

the function δ that assigns to each node in V a possibility is a decoration if and only if for each node

n it holds that:

1. δn(p) = 1 ⇐⇒ n ∈ V (p);

2. δn(A) = {δm|n A−−→ m}.
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A possibility represents the solution to the minimal system of equations in which all bisimilar

systems of equations are collapsed; that is the possibilities that represent decorations of bisimilar

labelled graphs are bisimilar and can be represented by the minimal one. This shows that the class

of bisimilar labelled graphs and, therefore, of bisimilar Kripke structures, used by mA∗ as states,

can be represented by a single possibility.

The relation between labelled graphs and possibilities is summarised as follows

Proposition 4.1 (Labelled graphs and possibilities [?]) The relations between labelled graphs

and possibilities are summarized as follows:

• Each possibility can be pictured by a labelled graph;

• Each labelled graph has a unique decoration;

• Two labelled graphs have the same decoration if and only if are bisimilar.

From this proposition we can conclude that a possibility is anything that can be pictured by a

labelled graph and therefore by a Kripke structure.

Example 4.3 (Example of labelled graph) Graphical representation of the unique solution δ

of the system of equations of the Example ??.

p p, q

A

A

B

G =
(︂
{r, g, b},

(︂
{(r, g), (g, g)}⏞ ⏟⏟ ⏞

A−−→

, {(g, b)}⏞ ⏟⏟ ⏞
B−−→

)︂
,P

)︂
P(p) = {r, g}

P(q) = {g}

Figure 4.4: Graphical representation of the labelled graph G where the nodes r, g, b are the red, green
and blue ones, respectively.

It is not hard to see that a labelled graph is just a Kripke model and therefore it holds that:

Proposition 4.2 (Relation between Kripke structures and Possibilities)

• Each pointed Kripke structure has exactly one set as its solution;

• Two models are bisimilar if and only if they are picture of the same set; and,

• If (M, s) is a picture of a, the for each φ ∈ LC
AG : (M, s) |= φ ⇐⇒ a |= φ.





5
Possibility as a State

The research on multi-agent epistemic domain, both in logic and planning, already comprehends

several theoretical studies [?,?,?,?,?,?,?,?,?,?] and also a variety of solvers [?,?,?,?,?,?] even if, at

the best of our knowledge, only [?,?] can reason without limitations on domains described by LC
AG .

Anyway multi-agent epistemic solvers still have to reason on domains where the number of

fluents and/or agents is very small. This is to reduce the length of the planning problems solution

that otherwise would require an excessive quantity of resources (i.e., time and memory). For these

reasons the demand of computational resources needed (for example in respect to classical planning)

is one of the central problem in MEP.

To reduce this gap several approaches can be used: i) as in [?,?,?,?] the planning domain can

be limited to a less expressive class of problems. On the other hand, when generality is required,

ii) heuristics can effectively reduce the resolution process, as shown in [?]. Finally another approach

to follow could be iii) to consider alternative representations to Kripke structures; this is what mAρ

tries to do.

Changing the structure is especially important because different state representation can lead to

a better use of the resources, and to exploit properties of the new structure to introduce important

functionalities; e.g., mAρ can rely on the concept of bisimulation to introduce the notion of visited

states, being bisimulation an equality criteria for non-well-founded sets.

5.1 State representation

As main contribution of this thesis, we introduce a modified version of mA∗, called mAρ. The

difference is in how a state is defined: in mA∗ a state is represented as a Kripke structure while in
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w = {(ag, {w,w′}), (C, {v, v′}), look(ag), key(A), opened}
w′ = {(ag, {w,w′}), (C, {v, v′}), look(ag), key(A), opened, heads}
v = {(A, {v, v′}), (B, {v, v′}), (C, {v, v′}), look(ag), key(A)}
v′ = {(A, {v, v′}), (B, {v, v′}), (C, {v, v′}), look(ag), key(A), heads}

where ag ∈ {A,B}.

(a) System of equations for possibilities.

w

v

A,B

A,B,C

w′

v′
A,B,C

A,B
A,B

C C

C C

A,B,C

(b) Decoration of the pointed labeled
graph (G,w).

Figure 5.1: Representation of the possibility w after the execution of the actions
distract(C)⟨A⟩;open⟨A⟩ on the initial state of Example ??. The possibility is expanded to its
system of equation for clarity.

mAρ a state is a possibility (Section ??). For simplicity, we have maintained the syntax used in

mA∗.

The strict connection of these two structures is highlighted in [?] from the fact that a solution to

a system of equations for possibilities (Definition ??) represents a decoration for a labelled graph,

which is essentially a Kripke model. In [?], it is also expressed that a “possibility corresponds with a

whole class of bisimilar, but structurally different, Kripke models".

Let us define the usage of possibilities as states in a MEP domain where the set of agents is AG
and the set of fluents is F . A possibility is a function that assigns to each propositional variable

f ∈ F a truth value u(f) ∈ {0, 1} and to each agent ag ∈ AG a set of possibilities u(ag).

A state in MEP has to encode the truth value of the fluents, as in classical planning, and also

the beliefs of the agents about fluents and beliefs themselves. We defined in Section ?? how Kripke

structures represent these information. In Figure ?? we use a possibility as a system of equations to

encode a state (of the domain in Example ??).

An equation is represented in the form u = {(ag1, σ), (ag2, σ′), . . . , f, f ′, . . . } where ag1, ag2 ∈ AG,

σ, σ′ are sets of possibilities and f, f ′ ∈ F . When we write (ag, σ) we mean that, in u, the agent ag

believes that the possibilities in σ are plausible. On the other hand only if a fluent f is present in

the equation this means that the fluent itself is true in u.

It is clear that a possibility correspond to a decoration of a pointed labeled graph and therefore

to a unique Kripke model up to bisimulation. The representation through possibilities allows, in our

opinion, a more clear and concise view of the state. That is because each state is represented by a single

possibility; e.g., Figure ?? is represented by w= {(ag, {w,w′}), (C, {v, v′}), look(ag), key(A), opened}
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where ag ∈ {A,B}.

5.2 State equality through bisimulation

One of the reasons we chose to use possibilities as states is to exploit this new structure to introduce

new functionalities to MEP. In fact having the states described as possibilities, which are strongly

related to non-well-founded sets, help us to introduce the concept of visited states, a core idea in

planning.

As said before, a possibility in the sense of decoration, represents all the Kripke structures

bisimilar to the decoration itself. This means that with possibilities we can exploit bisimulation to

capture the idea of equality between states. In fact, given two bisimilar decorations (or labelled

graphs), these, even with structural differences, are represented by the same possibility. On the

other hand this is not true when it comes to Kripke structures. This idea is best described through

graphical representation, so let us consider the following example

Example 5.1 (Visited states)

As an example, let us introduce two new actions: flip and tell(ag). The first one is an ontic

action, where an agent inverts the position of the coin; the observability of this action depends on

the fluents looking. On the other hand, tell(ag) means that an agent announces to ag the position

in which she thinks the coin lies while all the other agents are oblivious.

Assuming that the coin lies tails up and given a sequence of action instances ∆ = peek⟨B⟩;
distract(B)⟨C⟩; flip⟨C⟩; tell(B)⟨C⟩ we show in Figure ?? the result of applying ∆ in a slightly

modified initial state of Example ?? where C{A,B,C}(opened ∧¬look(A)).
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s0 s1A,B,CA,B,C A,B,C

(a) Graphical representation of the initial state

through the pointed Kripke structure (M0, s0)

where s0 = {look(B), look(C), opened} and s1 =

{look(B), look(C), opened, heads}.

s0 s1A,B,CA,B,C A,B,C

p0B,C

A A

(b) The pointed Kripke structure (M1, p0) ob-

tained after the execution of peek⟨B⟩ in (M0, s0),

where p0 = {look(B), look(C), opened}.

s0 s1A,B,CA,B,C A,B,C

q0B,C

A A

(c) The pointed Kripke structure (M2, q0) ob-

tained after the execution of distract(B)⟨C⟩ in

(M1, p0), where q0 = {look(C), opened}.

s0 s1A,B,CA,B,C A,B,C

q0
B,C

A A

r1

A
A

C

B

(d) The pointed Kripke structure (M3, r1) ob-

tained after the execution of flip⟨C⟩ in (M2, q0),

where r1 = {look(C), opened, heads}.

A, B, Cs0 s1

A, B, C A, B, C

r1

q0 A
A

A
A

B, C

B, C

(e) The pointed Kripke structure (M4, r1) obtained after the execu-

tion of tell(B)⟨C⟩ in (M3, r1).

Figure 5.2: Execution of ∆ = peek⟨B⟩; distract(B)⟨C⟩; flip⟨C⟩; tell(B)⟨C⟩.
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In Figure ??, it is represented a Kripke structure that has structural differences in respect to the

one in Figure ??. This means that these two Kripke structures represent two different states in mA∗

even if they are intuitively the same. On the contrary, if we think in term of possibilities, both the

Kripke structures of Figure ?? are represented by possibility

r1={(A, {s0, s1}), (B, {r1}), (C, {r1}), look(C), key(A), opened, heads}.

A, B, Cs0 s1

A, B, C A, B, C

r1

q0 A
A

A
A

B, C

B, C

(a) The pointed Kripke structure (M4, r1)

A,B,Cs0 s1

A,B,C A,B,C

r1

A
A

B,C

(b) A Kripke structure bisimilar to the one in Figure ??.

Figure 5.3: Bisimilar Kripke Structures.

Thanks to the use of possibilities we can capture bisimilar decoration while the same were

considered different in mA∗ and, therefore, check if a state has already been visited. Next we define

the concept of entailment and finally the transition function in mAρ.

We now introduce the concept of entailment w.r.t. possibilities.

Definition 5.1 (Entailment w.r.t. possibilities) Given the belief formulae φ,φ1, φ2, a fluent f,

an agent ag, a group of agents α, and a possibility u:

(i) u |= f if u(f) = 1;

(ii) u |= ¬ϕ if u ̸|= ϕ;

(iii) u |= ϕ1 ∨ ϕ2 if u |= ϕ1 or u |= ϕ2;

(iv) u |= ϕ1 ∧ ϕ2 if u |= ϕ1 and u |= ϕ2.
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(v) u |= Bagφ if for each v ∈ u(ag), v |= φ;

(vi) u |= ¬φ if u ̸|= φ;

(vii) u |= φ1 ∨ φ2 if u |= φ1 or u |= φ2;

(viii) u |= φ1 ∧ φ2 if u |= φ1 and u |= φ2;

(ix ) u |= Eαφ if u |= Bagφ for all ag ∈ α;

(x ) u |= Cαφ if u |= Ek
αφ for every k ≥ 0, where E0

αφ = φ and Ek+1
α φ = Eα(E

k
αφ).

Now, as we have done in Section ??, we define the observability relations term of sets.

Definition 5.2 (Observability relations) Given a possibility u and an action a, let us define the

following sets

• FD(a, u) = {ag ∈ AG|[ag observes a if φ] ∈ D ∧ u |= φ}

• PD(a, u) = {ag ∈ AG|[ag aware_of a if φ] ∈ D ∧ u |= φ}

• OD(a, u) = AG\(FD(a, u) ∪ PD(a, u))

where FD(a, u), PD(a, u) and OD(a, u) represents the sets of agents that are fully observant, partially

observant and oblivious of the execution of a in the state represented by the possibility u, respectively.

5.3 Transition function

Finally we introduce the transition function for mAρ. In defining this transition function we made

some assumptions: i) we consider that the given initial state also specifies which world is the pointed

one (as said in [?]), this allow us to relax the description of Φ in the case of announcements or sensing

actions. Moreover ii) we do not take into consideration the case in which an agent can have false

beliefs1 because is still an open question how to deal with them in MEP; we will try to address this

problem in future works. The transition function relative to the domain D is ΦD : AI×Σ → Σ∪{∅}
where Σ is the set of all the possibilities.

For the sake of readability, we will indicate with FD, PD andOD the sets FD(a, u), PD(a, u), OD(a, u),

respectively., where a is the action of an action instance and u is a possibility.
1An agent ag has a false belief about φ in state s if s |= φ and s |= Bag¬φ.
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Definition 5.3 (Transition function for mAρ) Let a ∈ AI, and a possibility u be given. If a is

not executable in u then ΦD(a, u) = ∅, otherwise if a is executable in u :

• ΦD(a, u) = v if a is an ontic action instance and⎧⎨⎩v(l) = u(l) if l ̸= caused(a)

v(l) = caused(a)[l] if l = caused(a)

and⎧⎨⎩v(ag) = u(ag) if ag ∈ OD

v(ag) =
⋃︁

w∈u(ag)ΦD(a,w) if ag ∈ FD

• ΦD(a, u) = v if a sensed the fluent l⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∅ if sensed(a)[l] ̸= u(l)

v(ag) = u(ag) if ag ∈ OD

v(ag) =
⋃︁

w∈u(ag)ΦD(a,w) if ag ∈ FD

v(ag) =
⋃︁

w∈u(ag)(ΦD(a,w) ∪ ΦD(¬a,w)) if ag ∈ PD

• ΦD(a, u) = v if a announces the fluent formula ϕ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∅ if u ̸|= ϕ

v(ag) = u(ag) if ag ∈ OD

v(ag) =
⋃︁

w∈u(ag)ΦD(a,w) if ag ∈ FD

v(ag) =
⋃︁

w∈u(ag)(ΦD(a,w) ∪ ΦD(¬a,w)) if ag ∈ PD

where:

• caused(a)[l] is the fluent modified by the action instance a;

• sensed(a)[l] represents the truth value of the fluent l determined by a = u(l);

• ¬a describes the action that senses the opposite of a; namely sensed(a)[¬l].

Note that sensing and announcement actions generate the empty set when the action effects do

not respect the fluents truth values of the possibility where the action is executed. That is because

epistemic action (i.e., announcement or sensing) cannot change the state of the world but only the

beliefs of the agent.
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As an example, we present the same sequence of action that we have done with Kripke structure,

in Example ??, using possibilities as states2. For readability, we will expand each possibility to its

respective system of equations.

Example 5.2 (Coin in the box with possibilities)

The observability relations and the definition of the initial state are the same of the Example ??.

Let start the example with the possibility that represent the initial state.⎧⎨⎩u = {(ag, {u, u′}), look(ag), key(A)}

u′ = {(ag, {u, u′}), look(ag), key(A), heads}

where ag ∈ {A,B,C}.

Figure 5.4: The initial possibility u.

⎧⎨⎩v = {(ag, {v, v′}), look(A), look(B), key(A)}

v′ = {(ag, {v, v′}), look(A), look(B), key(A), heads}

where ag ∈ {A,B,C}

Figure 5.5: Possibility v, obtained after the execution of distract(C)⟨A⟩ in u, i.e.,
ΦD(distract(C)⟨A⟩, u).

⎧⎨⎩w = {(ag, {w,w′}), (C, {v, v′}), look(ag), key(A), opened}

w′ = {(ag, {w,w′}), (C, {v, v′}), look(ag), key(A), opened, heads}

where ag ∈ {A,B} and v, v′, are the possibilities represented in Figure ??.

Figure 5.6: Possibility w, obtained after the execution of open⟨A⟩ in v, i.e., ΦD(open⟨A⟩, v).

⎧⎨⎩z = {(A, {z}), (B, {z, z′})(C, {v, v′}), look(ag), key(A), opened}

z′ = {(A, {z′}), (B, {z, z′})(C, {v, v′}), look(ag), key(A), opened, heads}

where ag ∈ {A,B} and the possibilities v, v′ are represented in Figure ??.

Figure 5.7: Possibility z, obtained after the execution of peek⟨A⟩ in w, i.e., ΦD(peek⟨A⟩, w).
2In Appendix A can be found the simultaneous execution of the ‘coin in the box’ example with both the states

representation.
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As for Kripke structures, we have that, the desired goal, holds in the possibility z:

• z |= BA¬heads ∧BA

(︂
BB(BAheads ∨BA¬heads)

)︂
• z |= BB(BAheads ∨BA¬heads) ∧ (¬BBheads ∧ ¬BB¬heads)

• z |= BC

(︂⋀︁
ag∈{A,B,C} (¬Bagheads ∧ ¬Bag¬heads)

)︂
• z |= C{A,B}(¬BBheads ∧ ¬BBheads)





6
Conclusions

In this thesis, we have investigated an alternative to Kripke structures as representation for multi-

agent epistemic planning states. In fact, inspired by [?] we have exploited non-well-founded set

theory to define the new action language mAρ: an action language for MEP based on possibilities.

The semantics of mAρ relies on the notion of possibility that is used to encode the world status and

the agents’ knowledge or beliefs.

Moreover, we have exploited possibilities to define a stronger concept of equality between states

collapsing, all the bisimilar Kripke structures into the same possibility. Thanks to that, recognizing

an already visited state can be done by simply checking the structural composition of the state itself.

Finally, given that in mAρ the state representation is more compact, it is possible to reduce the

search-space dimension.

Furthermore, we have investigated and analysed the multi-agent epistemic problem, studying

the complexity of the more relevant problems, such as

• the explicit state representation through pointed Kripke structures. As we have seen, a single

epistemic state is represented with a huge ( the size can be exponential in the number of agents

and fluents) Kripke structure;

• the satisfiability and validity problem of epistemic formulae, that are EXPSPACE-complete

problems; and,

• the undecidability of the plane existence problem in the case where |AG| ≥ 2.
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6.1 Future works

As an immediate continuation of this thesis and of the work that we have done in [?], we will

implement a planner that is parametric with respect to the state representation since we want to

consider other alternatives to Kripke structures and possibilities such as OBDDs [?,?].

On the other hand, as further developments to this thesis we plan to

• study the expressiveness of the distributed knowledge operator [?];

• try to exploit more set-based operations: especially for the entailment of group operators Eα

and Cα;

• formalize the concept of non-consistent belief for mAρ;

• adding the concept of static laws. As now mA∗ and mAρ deals only with dynamic laws;

• investigate more thoroughly the connection between Kripke structures and non-well-founded

sets;

• consider other heuristics to reduce the search space as in [?];

• consider symbolic representations of the state.



7
Appendix

7.1 mA∗ and mAρ comparison

For a more clear comparison we show the execution, on both mA∗ and mAρ, of the action instances

sequence ∆c = distract(C)⟨A⟩; open⟨A⟩; peek⟨A⟩, that leads to the desired goal, in the domain

expressed in Example ??. With this we want to give a graphical explanation of both the transition

functions and state-space defined by the two languages. Each state in mA∗ will be represented by a

Kripke structure while in mAρ will be a possibility (expanded to its respective system of equations

for clarity).

A,B,Cs0 s1

A,B,C A,B,C

M0[π](s0) = {look(ag), key(A)}
M0[π](s1) = {look(ag), key(A), heads}

where ag ∈ {A,B,C}.

(a) The initial Kripke structure (M0, s0).

{︄
u = {(ag, {u, u′}), look(ag), key(A)}
u′ = {(ag, {u, u′}), look(ag), key(A), heads}

where ag ∈ {A,B,C}.

(b) The initial possibility u.

Figure 7.1: The initial state.
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A,B,Cp0 p1

A,B,C A,B,C

M1[π](p0) ={look(A), look(B), key(A)}

M1[π](p1) ={look(A), look(B), key(A), heads}

(a) The Kripke stucture (M1, p0), obtained after the execu-

tion of distract(C)⟨A⟩ in (M0, s0).

⎧⎨⎩v = {(ag, {v, v′}), look(A), look(B), key(A)}

v′ = {(ag, {v, v′}), look(A), look(B), key(A), heads}

where ag ∈ {A,B,C}

(b) Possibility v, obtained after the execution of

distract(C)⟨A⟩ in u.

Figure 7.2: Execution of distract(C)⟨A⟩.

A,B,Cp0 p1

A,B,C A,B,C

A,Bq0 q1

A,B A,B

C

C C

C

M2[π](q0) = {look(ag), key(A), opened}

M2[π](q1) = {look(ag), key(A), opened, heads}

where ag ∈ {A,B}.

M2[π](p0) =M1[π](p0)

M2[π](p1) =M1[π](p1)

(a) The Kripke stucture (M2, q0), obtained after the execution of open⟨A⟩ in (M1, p0).⎧⎨⎩w = {(ag, {w,w′}), (C, {v, v′}), look(ag), key(A), opened}

w′ = {(ag, {w,w′}), (C, {v, v′}), look(ag), key(A), opened, heads}

where ag ∈ {A,B} and v, v′, are the possibilities represented in Figure ??.

(b) Possibility w, obtained after the execution of open⟨A⟩ in v.

Figure 7.3: Execution of open⟨A⟩.
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A,B,Cp0 p1

A,B,C A,B,C

Br0 r1

A,B A,B

C

C C

C

M3[π](r0) = {look(ag), key(A), opened}

M3[π](r1) = {look(ag), key(A), opened, heads}

where ag ∈ {A,B}.

M3[π](p0) =M1[π](p0)

M3[π](p1) =M1[π](p1)

(a) The Kripke structure (M3, q0), obtained after the execution of peek⟨A⟩ in (M2, q0).⎧⎨⎩z = {(A, {z}), (B, {z, z′})(C, {v, v′}), look(ag), key(A), opened}

z′ = {(A, {z′}), (B, {z, z′})(C, {v, v′}), look(ag), key(A), opened, heads}

where ag ∈ {A,B} and the possibilities v, v′ are represented in Figure ??.

(b) Possibility z, obtained after the execution of peek⟨A⟩ in w.

Figure 7.4: Execution of peek⟨A⟩.

Finally the goal that both the state in Figure ?? entail is expressed with the following formulae:

• BA¬heads ∧BA

(︂
BB(BAheads ∨BA¬heads)

)︂
• BB(BAheads ∨BA¬heads) ∧ (¬BBheads ∧ ¬BB¬heads)

• BC

(︂⋀︁
ag∈{A,B,C} (¬Bagheads ∧ ¬Bag¬heads)

)︂
• C{A,B}(¬BBheads ∧ ¬BBheads)


