
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Will it Blend? Composable Source Code Analysis
Khashayar Etemadi

KTH Royal Institute of Technology
Stockholm, Sweden

khaes@kth.se

Matthías Páll Gissurarson
Chalmers University of Technology

Gothenburg, Sweden
pallm@chalmers.se

Idriss Riouak
Lund University
Lund, Sweden

idriss.riouak@cs.lth.se

Momina Rizwan
Lund University
Lund, Sweden

momina.rizwan@cs.lth.se

Mohammed Reza Saleh
Umeå University
Umeå, Sweden

msaleh@cs.umu.se

Deepika Tiwari
KTH Royal Institute of Technology

Stockholm, Sweden
deepikat@kth.se

ABSTRACT
In the beginning, there were command line tools. Each was beauti-
fully designed and served a single function, such as wc and cat. A
single editor was born, ed, to serve as the standard editor. However,
mankind was convinced of its greatness, and wanted more. They
started small and wrote vi, a visual interface for ed. An editor with
a simple interface and humble features, which greatly improved
productivity. However, in its success, mankind grew vain and wrote
ever more complex editors, with grand interfaces and rich graphics,
with feature upon feature built into the editor itself. But they could
not agree. Some wanted to use a LISP dialect, others shouted for
JavaScript. And thus, like the fall of the tower of Babel, the editor
wars began, with each editor writing features integrated into its
very being, completely assimilated into its very core. Mankind grew
to like some of these features, but a problem emerged: how can
we share these features between editors so that we may all benefit,
and avoid another bloodshed like the editor wars? In this paper,
we describe an interface and units for that interface which abstract
common GUI editor operations into simple, one-feature-per-unit
command line programs, and peace in our time.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging;Documentation; •Computingmethodologies→Natural
language generation; Neural networks.

1 INTRODUCTION
State-of-the-art software technology tools analyse the software and
transform it into meaningful output to improve developer produc-
tivity. Researchers in academia are putting a lot f effort to develop
program analysis tools which analyze the code for finding bugs that
fit a bug pattern [8] and tools for program analysis like Soot [20],
Opal [9] or IntraJ [14]. But these tools are not being widely used
in industries because they are either too complex to use Modern
software tools are generally written as monolithic heaps of code to
operate as part of a framework within Integrated Development En-
vironments (IDEs) or other specialized tools. Modern IDEs provide
you capabilities like code completion, suggested refactoring and
automatic deployment systems. Such a complex software tool is
difficult to use and integrate within an automated industrial process
where the software needs to be distributed organisation-wide, and
where developers are continuously testing and prototyping new
features because testing might need adding and removing new tools

and the modern tools are not very modular. Having to deal with
complex software tools places a strain on developer’s productivity
because it requires a lot of time and engineering efforts to set them
up in the CI/CD integration cycle. One way to solve this problem
is to increase software flexibility and re-usability by introducing a
framework that allows software components to be plugged in and
out, easily exchanged and adapted to other purposes.

One of the best feature of a standard UNIX shell is the ability
to use pipes to compose modular software programs. The main
principle of UNIX is to compose minimal software modules/units
should do one task and do it well [11]. To the best of our knowledge,
this principle has never been applied to software tools in a system-
atic and meaningful way[2]. Although, piping mechanism allows
us to compose software tools by feeding the output of one tool
to the input of the other tool, the design of the interface between
different composable units is crucial. To be able to mix and match
different components into a full-fledged software, the components
are required to fit perfectly in the chain. This is only possible if we
choose such an interface between different components which is
generalisable (means being used by many shell tools already), and
easily extendable. To allow re-usability of components, each compo-
nent should perform one single task which cannot be decomposed
into smaller units.

Contribution:

• Applying UNIX philosophy to software tools and verifying
its practical significance by implementing real-life use cases
using this architecture.

• Design decision: Choosing an interface which is widely
applicable and language implementation independent.

• Experimental evaluation of our prototype to examine and
validate some research questions about
– modules being interchangeable,
– the scalability of our approach

2 ARCHITECTURE OVERVIEW
This section will describe our approach to decomposing software
components into the units implemented in the pipeline. We describe
the communication protocols (i.e., interactions) and the interface be-
tween the different units. Moreover, we will discuss the limitations
and advantages of all our design decisions.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

K Etemadi, MP Gissurarson, I Riouak, M Rizwan, MR Saleh, D Tiwari

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2.1 Unit isolation
As mentioned in section 1, developers rely heavily on IDEs to
perform many tasks that are actually composites of multiple atomic
tasks. We use this fact as motivation to decompose these tasks into
smaller, isolated units that “do one thing, and do it well“ [11]. For
example, with a few clicks, a developer may be able to replace all
occurrences of a literal within a project with another, all within
her IDE. The same outcome may be achieved by chaining together
independent units that are invoked on the developer’s shell, outside
of the IDE. As such, a single unit may be responsible for parsing
the source files in the project, and building an Abstract Syntax Tree
(AST) representation for it. This output may then be piped into
another unit that filters a subset of nodes in this AST corresponding
to all literals. Finally, another unit performs the actual replacement
of the input literal with another. Moreover, the scalability of this
design also allows standard UNIX programs, such as grep, cat,
or wc, to be chained together with these implemented units for
finer-grained control of the output and to achieve more potential
use cases.

We implement units that perform parsing of source files into
ASTs, as well as filtering and replacement of a set of nodes within the
AST. We design them so that they can interface with each other on
the shell, and can be chained together to achieve several use cases
relevant to developers. We illustrate this by implementing a unit
that interacts with other shell utilities, such as git, in order to gen-
erate documentation for methods defined within source files. The
following subsection presents the details of the implementations of
these units.

2.2 Unit implementation
To demonstrate that we can easily plug in or swap different modules
in the pipeline for different purposes, we implemented different
instances of the same functionalities (each with their own strengths
and limitations). For examples, we might need a faster parser (e.g.,
ExtendJ) that can parallelize the AST evaluation for the use cases
where the performance is important or we might need a parser (e.g.,
Soot) that can keep track in the AST of the comments in the source
file. The example shows that there is a need to have different tools
that perform the same functionality but have their own strengths
and weaknesses for different purposes/use cases. So, to improve a
developer’s productivity, there should be a simple way to just use
the most suitable parser for the every job. This convenience can
only be achieved if the units are modular and simple rather than
cumbersome and complicated.

The units implemented in the pipeline are summarized as follows.
mp-parser: This unit transforms an input source file into an

AST, using Json4Spoon1. It primarily outputs the AST as nested
JavaScript Object Notation (JSON), with information on the children
of each node. It also includes a built-in converter to transform this
output into a Comma-Separated Values (CSV) format. It is available
on GitHub at https://github.com/Tritlo/JavaToJSON.

k-parser: This unit parses a source file into an AST, using the
Spoon library [12]. It produces a CSV file with information on
all the nodes of the AST. This parser is available on Github at
https://github.com/khaes-kth/Simple-Parser.
1https://github.com/SpoonLabs/gumtree-spoon-ast-diff

NAME ... VISIBILITY

CtClassImpl ... public
CtMethodImpl ... private
CtInvocationImpl ... null
...
CtMethodImpl ... public
...

Table 1: CSVwith parsed AST nodes used as input to d-filter

NAME ... VISIBILITY

CtMethodImpl ... private

Table 2: Filtered CSV output from d-filter

im-parser: This unit parses a source file and construct the re-
spective AST using the Java Extensible compiler ExtendJ. The unit
produces a CSV file containing the source location (i.e., line-start,
line-end, column-start, column-end,relative and absolute
path) and a set of composable properties. These properties are
composed assembling different ExtendJ APIs. This approach al-
lows the unit’s user to generate ad-hoc information, e.g., a variable’s
unique identifier and enables advanced analyses. The limitation of
the im-parser are the following:

• ExtendJ supports all java versions up to Java 8,
• It generates only CSV, therefore, the output is limited by

the CSV representation,
• The comments are discarded by ExtendJ, therefore, all the

comments information are lost.

The strength of the im-parser are as follow:

• Reference Attributed Grammars (RAGs) are used to com-
pute the properties. RAGs enable on-demand evaluation
with the possibility to memoize already computed proper-
ties, allowing the parallel computation of attributes.

• It is easy to fetch information from a parent node in the AST
thanks to the expressivity of RAGs (i.e., inherited attributes
and synthesized attributes).

The im-parser is available onGitHub at https://github.com/IdrissRio/
JAVA2AST.

d-filter: This unit accepts a list of nodes in anAST, in CSV format,
and extracts a subset of the nodes that correspond to methods
or classes. The filtering is done based on the input criterion for
visibility, i.e., public or private. For example, it can produce the
CSV presented in Table 2, which is a subset of the CSV in Table 1,
corresponding to private methods. d-filter is available on GitHub
at https://github.com/Deee92/ast-filter.

m-filter: This unit accepts a list of nodes in an AST, in CSV
format, and extracts a subset of the nodes that correspond to syn-
tactic constructs. This unit filters the input list based on other input
criterion for syntactic constructs such as loops, if, assertions,

2

https://github.com/Tritlo/JavaToJSON
https://github.com/khaes-kth/Simple-Parser
https://github.com/SpoonLabs/gumtree-spoon-ast-diff
https://github.com/IdrissRio/JAVA2AST
https://github.com/IdrissRio/JAVA2AST
https://github.com/Deee92/ast-filter

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Will it Blend? Composable Source Code Analysis

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

ASTNode ... Type Value
VariableAccess ... int BAR
IntegerLiteral ... int 2
VariableDeclarator ... int BAR

Table 3: CSV input to im-filter

ASTNode ... Type Value
VariableAccess ... int BAR
VariableDeclarator ... int BAR
Table 4: CSV generated by im-filter

flow breaks, switch, synchronized and try constructs. For in-
stance, it can produce the CSV or tabular format presented list-
ing of syntactic constructs a. m-filter is available on Github at
https://github.com/salehsedghpour/SyntacticConstructLocator.

im-filter: This filter reads from standard input a CSV generate
by a previous unit. It filters the rows according to a specific criteria
specified by the user. For example:

By running the im-filter on the Table 3 with the criteria specified
as the following command line flag -filterby=type{int},value{bar}
gives an output as in Table 4.

k-replacer: This unit accepts a literal node in an AST, in CSV
format, and replaces them with a new literal with a given value.
This replacement is done by manipulating the source code at the
location specified by the given node. For example, it can replace a
string like “old-str” with a new string like “new-str”. k-replacer
is available on Github at https://github.com/khaes-kth/kh-replacer.

doctor: Short for DOCumentation generaTOR, this unit accepts a
list of public methods, and produces Javadoc-like documentation for
them. More specifically, it populates a template with the following
information:

• method description, which in the current preliminary im-
plementation, is extracted from the method name. In future,
this may be replaced with more sophisticated analyses or
even with natural language processing techniques.

• author information, which is obtained using git blame on
the lines in the source file that correspond to the method.

• parameters,
• return type, and
• thrown exceptions, which are obtained with through static

analysis of the method with Spoon [12].
Figure 3 is an example of the documentation generated by doctor
for the method isPrime(int) in the commons-math project. The
output is redirected to the shell by default. Alternatively, modified
versions of the source files with the added documentation can also
be produced. doctor is available on GitHub at https://github.com/
Deee92/doctor.

2.3 Interface design
Whereas some units introduced in subsection 2.1 produce outputs in
the JSON format, such as mp-parser, others produce CSV outputs,
as in the case of k-parser, or d-filter. Both the JSON and CSV
interfaces have their merits and drawbacks. For example, JSON

outputs can be nested and describe the structure of the AST in more
detail, using properties and child nodes. However, this also means
that these outputs may not be very command-line friendly. On the
other hand, CSV formats may not be as nested or descriptive, but are
typically very easy to workwith on the command line. As illustrated
in Figure Figure 1, we have tried to utilize the advantages of each
format and mitigate these differences by allowing conversion from
the JSON to CSV output for readability. Note that conversion in the
opposite direction is currently not supported, but is proposed as an
extension.

2.4 Supported use cases
We now present a list of the use cases achievable with the current
implementation of our pipeline.

• Semantic replacing or renaming of any name (e.g., method
or variable) across multiple compilation units.

• Adding documentation to method declarations, which can
be achieved by chaining together the parser, filter, and the
documentation generator (doctor). Therefore, this invoca-
tion can be illustrated as
parser | d-filter | doctor
where parser may be substituted with any parser that
produces an appropriate output that is compatible with
d-filter. In subsection 3.2, we also illustrate this use case
as part of our evaluation.

• Finding syntactic constructs in the source based on input
criteria (e.g., for-loops longer than 𝑛 lines).

• Constant propagation and constant folding, exploiting com-
piler’s analyses.

• Method extraction.
• Quick Fixes (e.g., replacing reference with structural equal-

ity).

3 METHODOLOGY
3.1 Research Questions
We now present the research questions we aim to answer with our
evaluation.

• RQ1: Can the individual units be replaced in the pipeline with
their alternative implementations?
The same goal in programming may be achieved through
diverse implementations [6]. For example, corresponding
to an input, a unit may achieve two equivalent outputs fol-
lowing two different algorithms or through the use of two
distinct libraries. This implies that alternative implementa-
tions of a unit may be used interchangeably by developers
to produce the same result. We elaborate on the protocol
used to evaluate this property in our pipeline, in subsec-
tion 3.2.

• RQ2: Can decomposing large programs help increase their
performance?
Decomposing large programs into small units enables us to
fine-tune the interactions between these units and create
new efficient compositions of them. In this research ques-
tion, we evaluate whether this gives us an opportunity to
increase the performance of our programs.

3

https://github.com/salehsedghpour/SyntacticConstructLocator
https://github.com/khaes-kth/kh-replacer
https://github.com/Deee92/doctor
https://github.com/Deee92/doctor

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

K Etemadi, MP Gissurarson, I Riouak, M Rizwan, MR Saleh, D Tiwari

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

K-Parser

IM-Parser

MP-Parser

D-Filter

IM-Filter

M-Filter

K-Filter

./JQ

D-Doc Generator

K-Replacer

IM-Replacer

LitReplacer.sh

Converter Converter Patcher

Terminal Preview

Diff

Modified Source Code

Source
code

Legend

Multiple output formats

Specialized output formats

CSV

TAB

JSON

JS
O

N
TA

B
C

S
V

H
R

T

JS
O

N
TA

B
C

S
V

H
R

T

CSV

CSV

TAB

JSON

CSV

Figure 1: The units and their relations

• RQ3:What is the appropriate interface in terms of ease-of-use
for developers and user readability?
Choosing the appropriate interface is crucial for achieving
unit developer ease-of-use and user readability, when many
different parties are involved in writing units and reading
the output. We illustrate the merits and drawbacks of dif-
ferent interfaces by answering this question by answering
the following questions:
– RQ3.1 What interface designs simplify integration with

other established tools outside of our own framework?

– RQ3.2What interface designs do end-users find easy to
use?

3.2 Protocol for RQ1
In order to demonstrate the interchangeability of alternative im-
plementations of a unit, we replace one implementation with an-
other and compare the outputs obtained for a specific use case.
Moreover, to ensure that this evaluation is performed on a real-
world source file, we use one source file each from two widely
used, open-source projects of the Apache Software Foundation,
called commons-math2 and commons-lang3. Table 5 presents some
details about these projects, such as the number of stars on GitHub
(#STARS), the VERSION used for the evaluation, the fully qualified
name of the class source file (SOURCE_FQN), as well as the number
of lines of code (LOC) in the file.

Figure 2 illustrates the protocol for this evaluation. For each
source file, we use mp-parser and k-parser to parse it into an
AST. Next, for each output AST, we obtain a set of public methods
with the d-filter. We then use the documentation generation
unit, doctor, to generate documentation for both sets of outputs.
Finally, we verify the equivalence of the two outputs of doctor.

2https://github.com/apache/commons-math/tree/MATH_3_6_1
3https://github.com/apache/commons-lang/tree/rel/commons-lang-3.12.0

mp-parser

d-filter doctor
k-parser

Figure 2: Evaluation protocol for RQ1

This allows us to draw conclusions about the equivalence of alter-
native implementations of the parsers. We present the results of
this evaluation in subsection 4.1.

Note that, for the current pipeline, this evaluation can only be
performed for alternative implementations of the parsers. Recall
from subsection 2.1 that the two parsers have diverse implemen-
tations and equivalent outputs. However, the same is not true for
the 5 filters in the pipeline. As highlighted in subsection 2.2, the
filters produce a disjoint set of outputs. For example m-filter can
produce a set of syntactic constructs such as loops, while d-filter
outputs a set of methods or classes of the specified visibility. There-
fore, for the evaluation of RQ1, we analyze the interchangeability
of the parsers only. However, we propose that an extension to the
pipeline with the addition of more equivalent filters will facilitate
the demonstration of their interchangeability as well.

3.3 Protocol for RQ2
To assess the performance improvement that our proposed method
provides, we conduct the following experiment. First, we develop a
simple Java program that creates a hard-coded array of 100 strings
from “1” to “100” and then prints elements of this array. Next, we
compare the time required for replacing these literals of this pro-
gram using two different versions of a “String Modifier” program.

The first version of the string modifier is a composition of three
basic units: a parser (here k-parser), a filter (an ast-filter, namely
k-filter), and a literal replacer (here k-replacer). The parser gets a
Java program and outputs its AST nodes in a CSV file. The filter gets
the CSV output of a parser and outputs a CSV that only contains

4

https://github.com/apache/commons-math/tree/MATH_3_6_1
https://github.com/apache/commons-lang/tree/rel/commons-lang-3.12.0

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Will it Blend? Composable Source Code Analysis

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Project #STARS VERSION SOURCE_FQN LOC

commons-math 425 3.6.1 org.apache.commons.math3.primes.Primes 56

commons-lang 2.2k 3.12.0 org.apache.commons.lang3.ArraySorter 41
Table 5: Source files used for the evaluation of RQ1

the literal nodes with a given value. Finally, the literal replacer gets
a filtered AST node and replaces it in the source code with a given
new literal. These three units work in isolation and can be executed
in separated processes. The output of each unit can be used by other
units or even other programs, since they can be executed separately.
We call this version the I-StringModifier.

The second version of the string modifier contains the exact
same units as the first one, while its units are not isolated. This
means to run the string modifier we have to execute all three units
in a single process. Consequently, the interactions between units
only happen inside the program and they cannot be reused by other
units or programs. We call this version theW-StringModifier.

As mentioned above, the goal of our experiment is to replace all
100 strings with new ones. For this purpose, we target replacing
every string of a number𝑛 with a string of number𝑛+100. For exam-
ple, “1” becomes “101”. Doing this with I-StringModifier requires
running the parser once to get the AST and running the filter and lit-
eral replacer units one hundred times to find and replace each string.
On the other hand, when we useW-StringModifier, we have to
run the whole pipeline (i.e. parser, filter, and literal replacer) one
hundred times. Note that in this experiment I-StringModifier rep-
resents a software project that follows our proposed approach, as it
decomposes a large program into small units and allows us to reuse
the output of small units. On the other hand,W-StringModifier
represents a software project that does not take advantage of de-
composition of large units.

We conduct the experiment using each version of the string mod-
ifier with two different configurations: with one process dedicated
to running the experiment, and with four processes dedicated to
the task. Comparing results for these two different configurations
can help us better understand the impact of parallelization of the
task using each version of the string modifier.

After running the experiments on the samemachine, we compare
the time needed to finish the replacing. A faster finish shows a
more scalable method. We run the experiment on a machine with
an Intel Core i5-6260U CPU running at 1.80GHz and 16GB of DDR4
2133MHz RAM.

3.4 Protocol for RQ3
What is the appropriate interface in terms of ease-of-use for developers
and user readability?

As part of our work, we implemented interfaces following two
different approaches: one based on a tabular format (encoded as
CSV) and another based on a nested format (encoded as JSON).

To compare the two, we look at two measures:

• RQ3.1What interface designs simplify integration with other
established tools outside of our own framework?

An important metric for the interface is the ease-of-use
for unit developers, as approximated by implementation
complexity. High implementation complexity would make
the tool hard to work with for unit developers, which are
an important part of the tool ecosystem. To assess the im-
plementation complexity, we compare the lines-of-code-
as-implemented for the two comparable units, namely the
Parser, the Literal Replacement, and the visibility filter.

• RQ3.2 What interface designs do end-users find easy to use?

An important part of designing the interface is the "read-
ability" of the output, i.e. how easy it is for users to parse
without machine assistance. As "readability" is not very
well defined, we use the amount of data returned after run-
ning the parsers on different programs as a proxy metric for
readability. Too much data on the command line can over-
whelm even the most dedicated users, and thus compromise
readability.

4 RESULTS
This section presents the results from our evaluation of the three
research questions.

4.1 Results for RQ1
Per the protocol presented in subsection 3.2, we verify that the
output of the documentation generation unit, doctor, is equivalent
for a source file parsed with either mp-parser or k-parser.

Figure 3 presents the output of doctor for amethod in commons-math
called isPrime, which accepts an integer parameter and returns
true if it is prime. The Javadoc-like documentation generated by
doctor includes information on the author, the parameter, and the
return type for the method. This output is the same, regardless of
the parser used to parse the source class, Primes. Similarly, Fig-
ure 4 presents the output for the method sort in the commons-lang
project, which returns a sorted version of an input array of float
values. As in the previous case, this documentation is also identical
for both parsers used on the source class, ArraySort.

This evaluation demonstrates that both the d-filter and the
doctor are independent of the implementation of the parser, and
that their output is solely dependent on the input they receive from
the preceding unit in the pipeline. Individual units with diverse
implementations in the pipeline, such as the parser, may therefore
be used interchangeably, provided their outputs are equivalent.
This is because the unit that consumes the output of such units is

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

K Etemadi, MP Gissurarson, I Riouak, M Rizwan, MR Saleh, D Tiwari

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

/**
*
* is prime
* @author Luc Maisonobe 2013-03-10 21:05:20
* @param n
* @return boolean
*/
public boolean isPrime(int n) {

...
}

Figure 3: Output of doctor for isPrime(int) in commons-math

/**
*
* sort
* @author Gary Gregory 2020-12-21 16:43:30
* @param array
* @return float[]
*/
public float[] sort(final float[] array) {

...
}

Figure 4: Output of doctor for sort(float[]) in
commons-lang

One Process Four Processes
I-StringModifier 172 (sec) 136 (sec)

W-StringModifier 399 (sec) 302 (sec)
Table 6: Time spent on each execution of theRQ2 experiment.

oblivious to the exact protocol, algorithm, or library used in their
implementation.

Answer to RQ1: Can the individual units be replaced in
the pipeline with their alternative implementations?
Provided that a unit has diverse implementations but equiva-
lent outputs, either implementation may be used to achieve
the same output for a use case.

4.2 Results for RQ2
Table 6 and fig. 5 present the results of our experiment for an-
swering RQ2. As it is shown, I-StringModifier is significantly
faster than W-StringModifier with both configurations (one pro-
cess or four processes). More specifically, when one process is
used, I-StringModifier is 57%((399 − 172)/399) faster than W-
StringModifier and when four processes are used, it is 55%((302−
136)/302) faster.

Note that I-StringModifier runs the parser only once and the
filter and literal replacer one hundred times. On the other hand, W-
StringModifier runs all three units one hundred times, as it is not
decomposed into small units like I-StringModifier and its whole
pipeline should be run to get the results. Therefore, we can conclude
that almost the whole 136 seconds is spent on running the filter

One_Process Four_Processes

136

172

302

399

Se
co
nd

s

W-StringModifier
I-StringModifier

Figure 5: Time spent using a replacerwith each configuration.

and literal replacer a hundred times, and 263 seconds (399-136) is
spent on running the parser. This means I-StringModifier saves a
significant time by skipping the parsing step in 99 executions. Also,
it is worth mentioning that the filter is a script that just selects the
lines of the parser’s output based on a given condition. Therefore,
we know the time it takes to complete the task is not significant
compared to the parser and literal replacer.

Themain reason that I-StringModifier is faster thanW-StringModifier
is that when the parser produces the AST, I-StringModifier uses
it for all replacement, while W-StringModifier has to regenerate
the AST every single time. This happens because decomposing
the replacer program in I-StringModifier enables us to reuse the
result of a single unit in many executions, while this option is not
available inW-StringModifier. Also, with a closer look we realize
the reduction in the time is almost the same as when one process is
used and when four processes are used (57% and 55%). The reason
behind this narrow gap is that since I-StringModifier generates
the AST once, that task is not performed multiple times and paral-
lelization does not reduce the time spent for it. On the other hand,
W-StringModifier runs both parsing and literal replacing tasks
multiple times which gives it a chance to reduce the time spent for
both parsing and literal replacing with parallelization.

Answer to RQ2: Can decomposing large programs help
increase their performance?
According to our evaluation, our proposed method for decom-
posing large programs enables developers to take advantage
of the results of a small part of the program multiple times
with running it only once. This can cut the resources required
for a task as much as 57%.

4.3 Results for RQ3
To evaluate the two interfaces, we looked at the lines of code for
each unit, and ran the parsers on their own source as well as a small
Hello.java file, as seen in fig. 6.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Will it Blend? Composable Source Code Analysis

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Units JSON CSV
Parser 130 744

Literal Replacer 24 93
Visibility Filter 16 256
Table 7: Lines of Code Comparison between units

public class HelloWorld {
public static void main(String [] args){

System.out.println("hello, world");
System.out.println("ok, world");

}
}

Figure 6: Hello.java used for evaluation

Nested_Parser Literal_Replacer Visibility_Filter
16

93
130

256

744

Li
ne
so

fC
od

e

JSON
CSV

Figure 7: Lines of Code for each implementation

4.3.1 RQ3.1 Outside tool integration. What interface designs sim-
plify integration with other established tools outside of our own frame-
work?

The results of our evaluation can be seen in table 7 and fig. 7. As
the data suggests, unit implementation is simpler when using the
JSON interface. We believe this is mainly due to the nested structure
of JSON being closer to the nested structure of the packages and
source code ASTs, as well as the availability of jq and its query
language making querying the JSON structure easier than for the
CSV case [7].

Answer to RQ3.1: What interface designs simplify inte-
gration with other established tools outside of our own
framework?

Using unit implementation complexity as a proxy measure
for simplicity of integration with other established tools, the
nested JSON-like format does better than the CSV-like tabular
format.

LOC JSON (Lines) CSV (Lines)
Hello.java 6 243 57

NestedParser 130 4080 919
TabularParser 744 26536 6581

Table 8: Relevant output comparison.

4.3.2 RQ3.2 Ease-of-use. RQ3.2What interface designs do end-users
find easy to use?

The lines of output per size of code base being evaluated (with
JSON processed by jq) is shown in table 8 and fig. 8. As seen from
the data, the JSON output is a sizeable 243 lines of output for only
6 lines of code, and growing to a massive 26536 lines for a only
744 lines of code. It is evident that this is quite a lot of output for a
human to parse without machine assistance.

Answer to RQ3.2: What interface designs do end-users
find easy to use?
A good answer to this question could have been obtained
by running a user study, which we unfortunately did not
have the resources for. However, using the amount of lines
in the output as a proxy for readability, and assuming that
readability is an important consideration for interface designs
in terms of end-users ease-of-use, using a CSV-like tabular
format is better than a nested JSON-like format.

Answer to RQ3: What is the appropriate interface in
terms of ease-of- use and readability?
Both approaches have their merits: JSON more closely repre-
sents the nested structure of the source files, and is thus easier
to query and manipulate in a programmatic way, resulting
in a low implementation complexity and ease-of-use for unit
developers. The CSV format is however much more succinct,
and has less extraneous data and is more easily readable for a
human without specialized tools.

5 RELATEDWORK
Modern software technology gives us tools that can systematically
analyse and transform software and thereby dramatically improve
developer productivity. We divide these earlier studies into works
concerning finding bugs or errors, refactoring, integration to IDEs,
program analysis, extended tools aimed at end-users and large-scale
program analysis.

5.1 Finding bugs or errors
One of the key outcome of static analysis could be finding bugs
or errors. Knizhnik and Artho [10], proposed Jlint, which checks
Java source code and find bugs, inconsistencies and synchroniza-
tion problems by analyzing data flow and building the lock graph.
Ayewah et al. [4] analyzed the use of FindBugs in production; Find-
bugs is an open source static-analysis tool for Java. In another study
Ayewah et al. [3], discussed the lesson learned from fixing the find-
bugs warnings. Aftandilian et al. [1] report how they used three
different tools on Google Java code base, from which, one of them
analyzed the source code to check for errors at compilation process
and automates repair of those errors. To summarize, most of efforts

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

K Etemadi, MP Gissurarson, I Riouak, M Rizwan, MR Saleh, D Tiwari

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

6 130 744
57919

4,080

6,581

26,536

Lines of Code

Li
ne
so

fO
ut
pu

t

Lines of Output per Lines of Code

CSV
JSON

Figure 8: Lines of parser output per number of lines in the
input between the two approaches.

to find bugs or errors in programs, analyze commonly found bugs in
the source code and create a repository of rules to capture various
kinds of bugs.

5.2 Refactoring
Refactorings are behaviour-preserving program transformations,
typically for improving the structure of existing code. Mathieu et
al. [21] present JunGL; a domain-specific language for refactor-
ing, which manipulates a graph representation of the program and
let the developers script their desired refactoring. The authors in
[13], break refactorings into smaller steps that need not preserve
behaviour individually. Schäfer et al. [16] present the idea to im-
plement the refactoring by embedding the source program into an
extended language on which the refactoring operations are easier
to perform, and then translating the refactored program back into
the original language.

5.3 Integration to IDEs
Most of software developers are using Integrated Development
Environments (IDE) for their daily tasks. Authors in [19] presented
Monto architecture which deals with integrating new functionality
into these environments. Siemund and Tovesson [18] also used the
Language Server Protocol to make java developers able to have
high level support such as code completion, hover tool tips, jump-
to-definition and find references as an extension of ExtendJ.

5.4 Program analysis
Program analysis play an important role, as they can help soft-
ware engineers spot potential run-time errors (e.g. null pointer
de-reference, array out of bounds indexing) already at compile time.
Vallée-Rai et al. [20] presented Soot, a framework for optimizing
Java bytecode, which lead to achieve higher performance. Schubert

et al. [17] also presented PhASAR, which is a LLVM-based static
analysis framework for C/C++ codes. Bravenboer and Smaragdakis
[5] also presented DOOP framework to specify pointer analysis
algorithms declaratively, using Datalog.

5.5 Extended tools
Various libraries has been implemented for the sake of program
analysis. For instance, Pawlak et al. [12] presented Spoon which is
a library for the analysis and transformation of Java source code.

5.6 Large scale program Analysis
Many tools have been proposed to analyze the programs, but when
it comes to large scale programs, they couldn’t be a solution at all.
For instance the authors in [3, 4], discussed the usage of FindBugs
in the Google codebase scale. According to [15], most of engineers
at Google work in an extremely large codebase, where they perform
more than 800k builds, run 100M test cases, produce 2PB of build
outputs, and send 30k changelist snapshots (patch diffs) for review.
Sadowsky et al. [15] also presented Tricorder, a program analysis
platform aimed at building a data-driven ecosystem around program
analysis in large-scale codebase.

6 CONCLUSION AND FUTUREWORK
Conclusion. In this project, we applied the UNIX philosophy to

implement different tools for composable source code analysis. We
achieve this through the implementation of several units that can be
invoked independently. The outputs of these units can be chained
together in a pipeline in order to accomplish typical use cases that
may be relevant for software developers on the job. Some use cases
we evaluated include AST node filtering, document generation, and
literal replacement. We compared two interfaces with respect to
amount of output and implementation complexity.

Future Work. However, with the lessons learned during this
project, we find that it may be beneficial to scale up the pipeline,
and analyze the impact of new units in real-world scenarios. We
therefore propose to build on the results presented herein by im-
plementing other units. For example, one extension could be to
add a unit that integrates with CI/CD pipelines to perform some
pre-deployment actions. Yet another one could delete a specified
set of elements from the AST. There can also be units that ana-
lyze code complexity, suggest variable or method names, or sort
methods based on input criteria to enable the end-users to improve
the quality of their codes. Another proposed extension is a unit
that instruments source files for dynamic analysis with different
configurable goals. The possibilities are endless! In terms of the
evaluation, an important direction is to compare the outputs in
terms of bytes produced rather than lines, and use a metric to better
compare "command line" friendliness, especially in terms of tools
pre-installed on systems. There is also a need for further evaluation
on the ease-of-development of units with respect to libraries and
pre-existing tools beyond what is covered in this report, and add
more exotic interfaces than CSV and JSON into the mix.

REFERENCES
[1] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan.

2012. Building Useful Program Analysis Tools Using an Extensible Java Compiler.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Will it Blend? Composable Source Code Analysis

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

In 2012 IEEE 12th International Working Conference on Source Code Analysis and
Manipulation. 14–23. https://doi.org/10.1109/SCAM.2012.28

[2] Dimitar Asenov, Peter Müller, and Lukas Vogel. 2016. The IDE as a scriptable
information system. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. 444–449.

[3] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs Fixit (ISSTA
’10). Association for Computing Machinery, New York, NY, USA, 241–252. https:
//doi.org/10.1145/1831708.1831738

[4] Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and
John Penix. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5 (2008),
22–29. https://doi.org/10.1109/MS.2008.130

[5] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-
tion of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications
(Orlando, Florida, USA) (OOPSLA ’09). Association for Computing Machinery,
New York, NY, USA, 243–262. https://doi.org/10.1145/1640089.1640108

[6] Liming Chen and Algirdas Avizienis. 1978. N-version programming: A fault-
tolerance approach to reliability of software operation. In Proc. 8th IEEE Int.
Symp. on Fault-Tolerant Computing (FTCS-8), Vol. 1. 3–9.

[7] Stephen Dolan. 2021. jq 1.6 Manual.
[8] Alexandru Dura, Christoph Reichenbach, and Emma Söderberg. 2021. JavaDL:

automatically incrementalizing Java bug pattern detection. Proceedings of the
ACM on Programming Languages 5, OOPSLA (2021), 1–31.

[9] Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and Mira Mezini.
2020. Modular collaborative program analysis in OPAL. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 184–196.

[10] Konstantin Knizhnik and Cyrille Artho. [n.d.]. Jlint - Find bugs in java programs.
http://jlint.sourceforge.net/

[11] M. D. McIlroy, E. N. Pinson, and B. A. Tague. 1978. UNIX time-sharing system:
Foreword. The Bell System Technical Journal 57, 6 (1978), 1899–1904. https:
//doi.org/10.1002/j.1538-7305.1978.tb02135.x

[12] Renaud Pawlak, MartinMonperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Experience 46 (2015), 1155–1179.
https://doi.org/10.1002/spe.2346

[13] Christoph Reichenbach, Devin Coughlin, and Amer Diwan. 2009. Program Meta-
morphosis. In ECOOP 2009 – Object-Oriented Programming, Sophia Drossopoulou
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 394–418.

[14] Idriss Riouak, Christoph Reichenbach, Görel Hedin, and Niklas Fors. 2021. A
Precise Framework for Source-Level Control-Flow Analysis. In 2021 IEEE 21st
International Working Conference on Source Code Analysis and Manipulation
(SCAM). 1–11. https://doi.org/10.1109/SCAM52516.2021.00009

[15] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Soderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
598–608. https://doi.org/10.1109/ICSE.2015.76

[16] Max Schäfer, Mathieu Verbaere, Torbjörn Ekman, and Oege Moor. 2009. Stepping
Stones over the Refactoring Rubicon. In Proceedings of the 23rd European Confer-
ence on ECOOP 2009 — Object-Oriented Programming (Italy) (Genoa). Springer-
Verlag, Berlin, Heidelberg, 369–393. https://doi.org/10.1007/978-3-642-03013-
0_17

[17] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2019. PhASAR: An
Inter-procedural Static Analysis Framework for C/C++. In Tools and Algorithms
for the Construction and Analysis of Systems, Tomáš Vojnar and Lijun Zhang
(Eds.). Springer International Publishing, Cham, 393–410.

[18] Fredrik Siemund and Daniel Tovesson. [n.d.]. Language Server Protocol for
ExtendJ.

[19] Anthony M. Sloane, Matthew Roberts, Scott Buckley, and Shaun Muscat. 2014.
Monto: a disintegrated development environment. In Software Language Engi-
neering (Lecture Notes in Computer Science), B Combemale, DJ Pearce, O Barais,
and JJ Vinju (Eds.). Springer, Springer Nature, United States, 211–220. https:
//doi.org/10.1007/978-3-319-11245-9_12

[20] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research (Mississauga, Ontario, Canada) (CASCON ’99). IBM Press, 13.

[21] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. 2006. JunGL: A Scripting
Language for Refactoring. In Proceedings of the 28th International Conference on
Software Engineering (Shanghai, China) (ICSE ’06). Association for ComputingMa-
chinery, New York, NY, USA, 172–181. https://doi.org/10.1145/1134285.1134311

9

https://doi.org/10.1109/SCAM.2012.28
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/1640089.1640108
http://jlint.sourceforge.net/
https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
https://doi.org/10.1002/spe.2346
https://doi.org/10.1109/SCAM52516.2021.00009
https://doi.org/10.1109/ICSE.2015.76
https://doi.org/10.1007/978-3-642-03013-0_17
https://doi.org/10.1007/978-3-642-03013-0_17
https://doi.org/10.1007/978-3-319-11245-9_12
https://doi.org/10.1007/978-3-319-11245-9_12
https://doi.org/10.1145/1134285.1134311

	Abstract
	1 Introduction
	2 Architecture Overview
	2.1 Unit isolation
	2.2 Unit implementation
	2.3 Interface design
	2.4 Supported use cases

	3 Methodology
	3.1 Research Questions
	3.2 Protocol for RQ1
	3.3 Protocol for RQ2
	3.4 Protocol for RQ3

	4 Results
	4.1 Results for RQ1
	4.2 Results for RQ2
	4.3 Results for RQ3

	5 Related Work
	5.1 Finding bugs or errors
	5.2 Refactoring
	5.3 Integration to IDEs
	5.4 Program analysis
	5.5 Extended tools
	5.6 Large scale program Analysis

	6 Conclusion and future work
	References

