
Efficient Demand Evaluation of Fixed-Point

Attributes using Static Analysis
∗

Idriss Riouak
idriss.riouak@cs.lth.se

Lund University
Lund, Sweden

Niklas Fors
niklas.fors@cs.lth.se
Lund University
Lund, Sweden

Jesper Öqvist
jesper.oqvist@cognibotics.com

Cognibotics AB
Lund, Sweden

Görel Hedin
gorel.hedin@cs.lth.se

Lund University
Lund, Sweden

Christoph Reichenbach
christoph.reichenbach@cs.lth.se

Lund University
Lund, Sweden

Abstract

Declarative approaches to program analysis promise a num-
ber of practical advantages over imperative approaches, from
eliminating manual worklist management to increasing mod-
ularity. Reference Attribute Grammars (RAGs) are one such
approach. One particular advantage of RAGs is the auto-
matic generation of on-demand implementations, suitable
for query-based interactive tooling as well as for client analy-
ses that do not require full evaluation of underlying analyses.
While historically aimed at compiler frontend construction,
the addition of circular (fixed-point) attributes also makes
them suitable for dataflow problems. However, prior algo-
rithms for on-demand circular RAG evaluation can be inef-
ficient or even impractical for dataflow analysis of realistic
programming languages like Java. We propose a new de-
mand algorithm for attribute evaluation that addresses these
weaknesses, and apply it to a number of real-world case stud-
ies. Our algorithm exploits the fact that some attributes can
never be circular, and we describe a static meta-analysis that
identifies such attributes, and obtains a median steady-state
performance speedup of∼2.5x and∼22x for dead-assignment
and null-pointer dereference analyses, respectively.

CCS Concepts: • Software and its engineering→ Auto-

mated static analysis; Formal language definitions.

Keywords: Attribute Grammars, Circular Attributes, Static
Analysis, Demand Analysis, Fixpoint Computations

∗This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

SLE ’24, October 20–21, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1180-0/24/10
https://doi.org/10.1145/3687997.3695644

ACM Reference Format:

Idriss Riouak, Niklas Fors, Jesper Öqvist, Görel Hedin,
and Christoph Reichenbach. 2024. Efficient Demand Eval-
uation of Fixed-Point Attributes using Static Analysis. In
Proceedings of the 17th ACM SIGPLAN International Conference
on Software Language Engineering (SLE ’24), October 20–21,
2024, Pasadena, CA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3687997.3695644

1 Introduction

Static program analysis is a key part of modern software
tools, including compilers and static checkers. After first
deriving facts from program code, many analyses rely on a
fixed-point computation over some lattice to find a solution
to a mutually dependent equation system. Typically, this
computation is either data-driven, exhaustively computing
all derivable facts, or on demand, computing only the facts
necessary to answer a particular query. Demand evaluation
can substantially outperform data-driven exhaustive analysis
when the analysis client asks for only a subset of the analysis
results, e.g., for a dead code elimination that uses constant
folding only for branch conditions or for interactive tools
that scan only code portions that are visible in the editor.
Reference Attribute Grammars (RAGs) [14] are a high-

level declarative formalism for specifying static program
analyses in terms of attributes, i.e., properties associated with
program nodes. These specifications take the form of equa-
tions (sometimes called semantic functions) that may intro-
duce dependencies between attributes. RAGs extend Knuth
Attribute Grammars (AGs) [20] to allow attribute equations
to describe and traverse references to other AST nodes, and
contemporary RAG frameworks provide facilities to reify ad-
ditional structures [40] such as Control Flow Graphs (CFGs),
and to compute fixed points with the help of circular at-
tributes [22] to solve typical dataflow problems [28, 31].

Contemporary RAG compilers [15, 30, 39] translate these
equations into attribute evaluation engines that answer at-
tribute queries by recursively evaluating the equations on
demand, memoizing intermediate results. When an attribute
has a self-dependency, evaluation iterates until the result no

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

56

https://orcid.org/0000-0003-3520-2262
https://orcid.org/0000-0003-2714-9457
https://orcid.org/0000-0001-5453-3695
https://orcid.org/0000-0002-3003-2623
https://orcid.org/0000-0003-0608-7023
https://doi.org/10.1145/3687997.3695644
https://doi.org/10.1145/3687997.3695644
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/


SLE ’24, October 20–21, 2024, Pasadena, CA, USA Idriss Riouak, Niklas Fors, Jesper Öqvist, Görel Hedin, and Christoph Reichenbach

longer changes. This evaluation strategy is practical formany
applications; for example, the ExtendJ Java compiler, which
is specified using RAGs, executes within 3× the execution
time of the handwritten reference compiler javac [12].
However, for applications that make heavy use of fixed

point computations, efficient evaluation may hinge on identi-
fying strongly-connected components (SCCs) over the depen-
dency graph and evaluating them in topological order [17].
This is non-trivial for RAGs as the dependency graph de-
pends on reference attribute values, and is therefore not
known before evaluation. Fixed point support in contempo-
rary RAG compilers uses either a heavy-weight algorithm
for all potentially cyclic attributes that can distinguish SCCs
separated by non-circular attributes [22], or a light-weight al-
gorithm that operates on a subset of the potentially cyclic at-
tributes but cannot distinguish between different SCCs [26].
We here propose a novel evaluation algorithm that over-

comes the limitations of the earlier algorithms by combining
their insights with a technique that statically identifies at-
tributes that are guaranteed to never be on a cycle. We have
implemented and validated our algorithm in the JastAdd
metaprogramming system [15], which compiles RAG speci-
fications to Java code. Our approach constructs a call graph
from the generated Java code and maps it back into attribute
declaration dependencies, which we use to conservatively
overapproximate dynamic evaluation dependency cycles. We
then feed this information back into JastAdd to allow it to
generate more efficient evaluation code.
While our work builds on RAGs, the algorithms are gen-

eral in that they can be applied to implement any system that
exposes a demand analysis as an observationally pure query
API on a graph of nodes (e.g., an abstract syntax tree or an
abstract syntax graph). We believe that our algorithms could
therefore also be useful for compilers built around other
query-based architectures, including Microsoft’s Roslyn plat-
form and the rustc compiler for Rust.

We start by giving a brief background on RAGs and circu-
lar attributes (Section 2). We then present our contributions:

• We introduce our new attribute evaluation algorithm
(Section 3).

• We propose a novel approach to conservatively iden-
tify dependencies in RAGs based on the call graph of
the generated evaluation code and explain how our
new algorithm uses this information to speed up eval-
uation (Section 4).

• We evaluate our approach on a set of real-world case
studies. Our evaluation shows that our approach can
significantly improve the performance of the gener-
ated evaluator (Section 5).

We then discuss relatedwork (Section 6) before concluding
the paper (Section 7).

state S1;

state S2;

state S3;

trans S1 -> S2;

trans S2 -> S1;

trans S2 -> S3;

S1

S2

S3

{S1,S2,S3}

{S1,S2,S3}

{}

Reachable states

Figure 1. State machine example. Textual syntax (left), visual
depiction (middle), and reachable states (right).

/* — Abstract Syntax Definitions — */

Machine ::= State* Transition *;

State ::= <Label:String >;

Transition ::= <SourceLabel:String > <TargetLabel:String >;

/* — RAG Attribute Definitions — */

syn Set <State > State.successors ();

eq State.successors () { ... };

syn Set <State > State.reachable ()

circular [new HashSet <State >()];

eq State.reachable () {

Set <State > result = new HashSet <State >();

for (State s: successors ()) {

result.add(s);

result.addAll(s.reachable ());

}

return result;

}

Figure 2. State machine language definition, comprising the
abstract grammar and the RAG specification of reachable.

2 Reference Attribute Grammars with

Circular Attributes

In this section we introduce Reference Attribute Grammars
(RAGs) and circular attributes by defining reachability for a
simple state machine language. Consider the example state
machine in Figure 1. For each of the machine’s three states,
we want to compute the set of transitively reachable states.

We demonstrate the analysis in the metacompilation sys-
tem JastAdd, eliding the concrete syntax definition for
brevity. We first parse input state machine programs such
as the one in Figure 1 into an abstract syntax tree (AST).
Figure 2 (top) shows the abstract grammar: a state machine
(Machine) consists of a list of states (State) and a list of
transitions (Transition). Each state has a label, and each
transition has a source and a target label.

Figure 2 (bottom) shows the definitions of two attributes,
successors and reachable. Each definition specifies the
attribute name on its left-hand side and gives a Java method
body on the right-hand side that must have no observable
side effects. For example, the attribute successors defines
the set of all successor states for State, though we elide
the implementation for brevity. Each non-terminal instance
(AST node) has its own set of attribute instances. For a state
𝑛, our definition of reachable computes the following:

57



Efficient Demand Evaluation of Fixed-Point Attributes using Static Analysis SLE ’24, October 20–21, 2024, Pasadena, CA, USA

n.reachable =
⋃

𝑠∈n.successors
{𝑠} ∪ s.reachable

Figure 2 writes the right-hand side of this equation in plain
Java code, looping over all successors to construct their union.
For each attribute, JastAdd generates a namesake method,
which here allows reachable to access successors directly.

The keyword syn marks both attributes as so-called syn-
thesized attributes, meaning that we evaluate their defining
equations in the context of the node that the attribute be-
longs to. Other kinds of attributes use other contexts; e.g.,
inherited attributes use the parent node context, though this
distinction is inessential for the work that we present here.
Since state machines may contain cycles, an instance of

reachable may depend on itself. We must thus declare
reachable as circular, which tells JastAdd to evaluate it
with a fixed-point iteration algorithm (shown in Section 3).
Circular attributes must have explicit bottom values: here,
we use the empty set ([new HashSet<State>()]). Since the
set of States forms a finite lattice on which set union is
monotonic, iteration terminates. JastAdd requires attribute
definitions to ensure that there can be no infinite chains of
updates, e.g. via finite-height lattices and monotonic updates.
When we access an attribute from Java, JastAdd will

now compute it on demand and memoize the result. For
example, suppose that we have parsed the program from
Figure 1 into an AST and have a reference s1 to the S1 state
node. By calling s1.reachable() we will execute the right-
hand side of the reachable attribute equation, which in
turn will call s1.successors(), and then recurse by call-
ing s.reachable() for each s from s1.successors(). If
we call reachable() on the S3 state node, its successors
attribute will be the empty set, so reachable will return the
empty set without recursing. For any attribute evaluation,
the exact set of attribute instances that we need to evaluate
thus depends on the structure of the AST, the equations, and
the values of attributes that we have evaluated so far.

3 Circular Attribute Algorithms

We now describe our on-demand algorithms for attribute
evaluation in the presence of circular attributes. We first dis-
cuss a general framework that captures commonalities across
the algorithms, then detail the constituent subalgorithms.

3.1 Preliminaries

In our approach, each non-terminal 𝑋 is implemented by a
corresponding class X, and each attribute X.attr by a method
X.attr(). If x is an instance of class X, we can thus access
the value of an attribute instance 𝑥 .𝑎𝑡𝑡𝑟 by calling x.attr().
We consider only well-formed RAGs for which each at-

tribute instance will have exactly one defining equation for
any possible AST. The defining equation and the attribute
may be located in different AST nodes, e.g., if the attribute is

inherited rather than synthesized.We abstract away the equa-
tion location by introducing a method X.attr_compute()
for each attribute declaration X.attr(). This method will
locate the equation in the AST and call a method correspond-
ing to the right-hand side of the equation. In this process,
the method will call a number of other attribute instances.
The calls form a dynamic dependency graph where each

edge ⟨𝑎, 𝑏⟩ represents a call from attribute instance 𝑎 to at-
tribute instance 𝑏. When 𝑎 can transitively reach an attribute
instance 𝑐 along the edges of this dependency graph, we say
that 𝑐 is downstream from 𝑎, and when 𝑎 is downstream from
𝑎 itself, we say that 𝑎 is effectively circular. Since the dynamic
dependency graph can depend on dynamically computed
reference attributes, we cannot precisely predict whether a
given attribute instance is circular in the general case.

3.2 Attribute Declarations and Main Algorithms

To avoid unnecessary fixed-point computation, we require a
declaration for each attribute that selects one of three sub-
algorithms for evaluating that attribute’s instances:

Circular An instance of an attribute declared as Circular
is allowed to be effectively circular. A Circular attribute
instance, x .attr , will be evaluated by a fixed-point compu-
tation, and has an explicit bottom value, computed by the
method x.attr_bottom_value().

NonCircular An instance of an attribute declared as Non-
Circular is not allowed to be effectively circular. If it is,
evaluating the instance will yield a runtime error.

Agnostic An instance of an attribute declared as Agnostic
is allowed to be effectively circular, if there is at least one
attribute declared as Circular on each cycle it is part of.
An Agnostic attribute does not have any explicit bottom
value. Instead, its first approximation will be computed
based on the approximations of its downstream attributes.
If it is on a cycle without any intervening Circular at-
tribute, attempting to evaluate it will yield a runtime error.

We say that a Circular attribute instance and its down-
stream attributes, up to any NonCircular attribute, belong
to the same fixed-point component. Thus, NonCircular at-
tributes stratify different fixed-point components into an
acyclic component graph. If evaluation starts in one fixed-
point component and flows through a NonCircular at-
tribute into another component, we suspend fixed-point
computation for the first component until we have reached
a fixed point for the second component (Section 3.5). When
two strongly connected components are instead directly con-
nected or separated only byAgnostic attributes, we evaluate
them as one single fixed-point component.

58



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Idriss Riouak, Niklas Fors, Jesper Öqvist, Görel Hedin, and Christoph Reichenbach

We consider three different main algorithms for evalua-
tion: BasicStacked, RelaxedMonolithic, and Relaxed-
Stacked. BasicStacked corresponds to the original algo-
rithm by Magnusson [22] and supports Circular and Non-
Circular attributes. Our version of BasicStacked is some-
what different from Magnusson’s version: We keep track of
in which fixed-point iteration each attribute was most re-
cently evaluated. This allows for an important optimization
where we avoid evaluating an attribute more than once if its
value is used more than once in the same iteration. This also
allows us to detect if an attribute that is (erroneously) clas-
sified as NonCircular is actually on a cycle at runtime. In
the paper by Magnusson, the algorithm did not support such
detection, but could instead compute the wrong result in case
of a specification error like this. The paper only sketched a
fix to this problem, and which relied on keeping track of sets
of attribute instances for each fixed-point component, which
would have slowed down the evaluation substantially.

A consequence of BasicStacked is that all attributes that
may have an effectively circular instance, for some AST,
must be declared as Circular. This can be impractical for
larger systems, like compilers and program analyzers for real
languages. For example, it may be the case that a common
attribute, say a type attribute, can have instances that are
on cycles only for particular language constructs, e.g., local
type inference in lambda expressions. Requiring an attribute
to be declared as Circular would then give an efficiency
penalty when analyzing all other parts of the program where
instances of the attribute are actually not on a cycle. To avoid
this problem, Öqvist introduced an alternative algorithm
that we call RelaxedMonolithic [25, 26], which supports
Circular and Agnostic attributes. Agnostic attributes can
be on a cycle, but if they are not, their evaluation can be
more efficient than for Circular attributes.
When using RelaxedMonolithic, all attributes that are

not explicitly declared as Circular are assumed to be Ag-
nostic, so there are no NonCircular attributes that can
separate strongly connected components. Therefore, when
a Circular attribute is evaluated, all its downstream at-
tributes, both Circular and Agnostic, will be evaluated as
part of the same monolithic fixed-point component. As our
evaluation will show, this can be very inefficient for demand
analyses that start with querying a Circular attribute. To get
the best of both BasicStacked and RelaxedMonolithic,
we therefore propose a new algorithm, RelaxedStacked
that supports all three kinds of attributes. In this algorithm,
NonCircular attributes can be used to separate the evalua-
tion into smaller fixed-point components. By using a static
conservative analysis of the attribute specification, we can
identify attributes that are guaranteed to never be on any
cycle in any possible AST, and that can therefore safely be
classified as NonCircular.
In the RAG specification, Circular attributes are the

only attributes requiring an explicit annotation by the

user, i.e., circular, like the reachable attribute in Fig-
ure 2. Attributes that are not declared as circular, such
as successors, are referred to as normal attributes. Normal
attributes are classified as either NonCircular or Agnos-
tic, depending on the main algorithm used, and on results
from the static analysis of the specification in the case of the
RelaxedStacked algorithm.

3.3 Subalgorithms and Variables

There is one subalgorithm for each of the three attribute
kinds: Circular, NonCircular, and Agnostic.We have for-
mulated the subalgorithms so that all three main algorithms
can use different combinations of exactly the same subal-
gorithms. Hence, BasicStacked corresponds to using the
two subalgorithms Circular and NonCircular; Relaxed-
Monolithic corresponds to using Circular and Agnostic;
RelaxedStacked corresponds to using all three subalgo-
rithms. The subalgorithms are shown in Listings 1-3 and use
the following key global variables.

IN_CIRCLE is a boolean global variable that is true when
evaluation is ongoing inside a fixed-point component, and
false otherwise. If an attribute is called when IN_CIRCLE
is false, its final value is returned. If it is called when
IN_CIRCLE is true, an approximation of it is returned.

CHANGE is a boolean global variable indicating if any value
was changed in the current fixed-point iteration.

CIRCLE_ITER is a global object uniquely identifying the cur-
rent fixed-point iteration.

Once an algorithm has computed the final value of some
attribute X .attr , the algorithm memoizes the result in an
instance variable X.attr_value. To keep track of whether
the attribute is memoized or not, NonCircular attributes
use a boolean instance variable X.attr_computed. For Cir-
cular and Agnostic attributes, the X.attr_value instance
variable will hold the current approximation of the value.
To monitor the status of X.attr_value, we use an instance
variable X.attr_iter of type Object. Initially, this is set to
NOT_INITIALIZED to indicate that no approximation has yet
been computed. Then, in each fixed-point iteration when
a new approximation is computed, the X.attr_iter is set
to the object identifying that iteration. Finally, when it is
deduced that the current approximation is the final value of
the attribute, this is recorded by setting X.attr_iter to the
constant object FINAL_VALUE.

Evaluation starts when themain program calls an attribute
of some node of the AST. Since IN_CIRCLE is initially false,
this call will return the final memoized value of the attribute.
As an effect of this evaluation, other attributes may either
be still unevaluated, or have an approximate value, or have
their final memoized value. A later call to an attribute with
an approximate value will continue its evaluation.

59



Efficient Demand Evaluation of Fixed-Point Attributes using Static Analysis SLE ’24, October 20–21, 2024, Pasadena, CA, USA

1 // Global variables

2 boolean IN_CIRCLE = false;
3 boolean CHANGE = false;
4 Object CIRCLE_ITER = new Object ();

5
6 // Global constants

7 final Object FINAL_VALUE = new Object ();

8 final Object NOT_INITIALIZED = new Object ();

9
10 class X {

11 // Instance variables

12 Object attr_iter = NOT_INITIALIZED;

13 T attr_value;

14
15 T attr() {

16 if (attr_iter == FINAL_VALUE) {

17 return attr_value;

18 }

19
20 if (attr_iter == NOT_INITIALIZED) {

21 attr_value = attr_bottom_value ();

22 }

23
24 if (! IN_CIRCLE) {// DRIVES
25 IN_CIRCLE = true;
26 do {

27 CHANGE = false;
28 CIRCLE_ITER = new Object ();

29 attr_iter = CIRCLE_ITER;

30 T v = attr_compute ();

31 if (! Objects.equals(attr_value , v)) {

32 CHANGE = true;
33 }

34 attr_value = v;

35 } while (CHANGE );

36 attr_iter = FINAL_VALUE;

37 IN_CIRCLE = false;
38 return attr_value;

39 } else if (attr_iter != CIRCLE_ITER) {// FOLLOWS
40 attr_iter = CIRCLE_ITER;

41 T v = attr_compute ();

42 if (! Objects.equals(attr_value , v)) {

43 CHANGE = true;
44 }

45 attr_value = v;

46 return attr_value;

47 } else {// ALREADY HANDLED in this iteration

48 return attr_value;

49 } }

50
51 T attr_compute () {

52 // Locate and evaluate defining equation

53 } }

Listing 1. Evaluation of Circular attributes

1 // Global variables

2 Stack STACK = ...;

3
4 class X {

5 // Instance variables

6 boolean attr_computed = false;
7 T attr_value;

8
9 T attr() {

10 if (attr_computed) {

11 return attr_value;

12 }

13 if (! IN_CIRCLE) {// NORMAL
14 attr_value = attr_compute ();

15 attr_computed = true;
16 return attr_value;

17 } else {

18 push CHANGE , CIRCLE_ITER on STACK;

19 IN_CIRCLE = false;
20 attr_value = attr_compute ();

21 IN_CIRCLE = true;
22 CHANGE , CIRCLE_ITER = pop from STACK;

23 attr_computed = true;
24 return attr_value;

25 } }

26
27 T attr_compute () {

28 // Locate and evaluate defining equation

29 } }

Listing 2. Evaluation of NonCircular attributes

1 class X {

2 // Instance variables

3 Object attr_iter = NOT_INITIALIZED;

4 T attr_value;

5
6 T attr() {

7 if (attr_iter == FINAL_VALUE) {

8 return attr_value;

9 }

10 if (! IN_CIRCLE) {// NORMAL
11 attr_value = attr_compute ();

12 attr_iter = FINAL_VALUE;

13 return attr_value;

14 } else {

15 if (attr_iter != CIRCLE_ITER) {// FOLLOWS
16 attr_value = attr_compute ();

17 attr_iter = CIRCLE_ITER;

18 return attr_value;

19 } else {// ALREADY HANDLED in this iteration

20 return attr_value;

21 } } }

22
23 T attr_compute () {

24 // Locate and evaluate defining equation

25 } }

Listing 3. Evaluation of Agnostic attributes

3.4 The Circular Subalgorithm

Listing 1 shows the subalgorithm for Circular attributes.
The first Circular attribute that is called in a fixed-point
component will take the role of driver, running the loop of
fixed-point iterations. Other Circular attributes in the same
component will be followers. The algorithm distinguishes
three different situations when calling a Circular attribute:

DRIVES An attribute instance takes the role of driver and
starts a fixed-point computation. It runs a loop and in each
iteration, it calls its compute method to get a new approx-
imation of its value, potentially (transitively) calling other
Circular attributes in the component, as well as itself.

FOLLOWS An attribute instance other than the driver is called
for the first time during the current fixed-point iteration.

60



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Idriss Riouak, Niklas Fors, Jesper Öqvist, Görel Hedin, and Christoph Reichenbach

𝑎 = {5} ∪ 𝑏 𝑏 = {42} ∪ 𝑐 ∪ 𝑑 𝑐 = 𝑏 ∪ 𝑎 𝑑 = 𝑐

𝑎

𝑏

𝑐

𝑑

𝑎

𝑏

𝑐

𝑏 𝑎

𝑑

𝑐

(drives)

(follows)

(follows) (follows)

(already) (already) (already)

Figure 3. Equations for Circular attributes (top). Dynamic
dependency graph (left). Call tree for one iteration (right).

It computes a new approximation by calling its compute
method, again potentially (transitively) calling other Cir-
cular attributes in the component, as well as itself.

ALREADY HANDLED A driver or a follower is called during
fixed-point iteration, but has either already been computed
in that iteration or is in the process of being computed
(i.e., another method invocation for the same attribute is
on the call stack). Then it simply returns its current value.
To illustrate how the Circular evaluation works, consider

the example in Figure 3 showing an equation system, the
dynamic dependency graph, and the tree of method calls for
one of the fixed-point iterations, given that a client demands
the attribute 𝑎 by calling a(). The attributes 𝑎, 𝑏, 𝑐 , and 𝑑 are
all sets of integers, and we assume that they are all declared
as Circular. Solving the equation system with a fixed-point
iteration, starting out with the empty set as bottom, the
solution will be 𝑎 = 𝑏 = 𝑐 = 𝑑 = {5, 42}.
Because the evaluation starts with 𝑎, this attribute be-

comes the driver, and will execute the DRIVES part of the
code, with the fixed-point loop. In each iteration in the loop,
it calls its compute()method which will in turn call b(). The
attribute 𝑏 becomes a follower, and will execute the FOLLOWS
part of the code which calls its compute method that will
first call c() and then d(). Both these attributes also become
followers. The attribute 𝑐 will similarly call b() and a(), but
both these will execute the ALREADY HANDLED part of the
code, since they are in the process of already being evaluated
during the same iteration, and their current approximation is
returned directly, without any call to compute(), ending the
recursion. Similarly, when d() calls c(), then 𝑐 has already
computed a new approximate value in the same iteration,
due to the previous call from b() to c(), again ending the
recursion. We can see from this example that the recursion
will terminate, and that each attribute that 𝑎 depends on will
update its value exactly once during an iteration.
Both the driver and the followers update the global vari-

able CHANGE to keep track of whether any of the approxima-
tions were updated during the current iteration. The driver
will loop until there is an iteration where no approximations
are updated. The driver and all its followers will then have
their final values and can memoize them. For simplicity, the
algorithm in Listing 1 only memoizes the driver, i.e., 𝑎 in
the example in Figure 3. Using an optimization called Last-
Cycle [22], the driver can memoize all the followers as well

𝑎1 𝑎2

𝑎3𝑎4

𝑏 𝑐1 𝑐2

C C

CC

NC C C

Figure 4. Attribute serving as a bridge between two circular
components. C=Circular, NC=NonCircular.

(𝑏, 𝑐 , and 𝑑 in the example). This is accomplished by the
driver calling its compute() method an extra time, with an
extra global flag set to signal to followers that they should
memoize their values. (The code for this is elided for brevity.)
If this optimization is not used, and a previous follower is
called at a later point in time, it will become a driver, and
find after one iteration that it can be memoized.

3.5 The NonCircular Subalgorithm

NonCircular attributes use the subalgorithm in Listing 2.
An instance of a NonCircular attribute is assumed to not
be effectively circular. (If it actually is circular, a runtime
error will be raised, see Appendix A.1.) The algorithm dis-
tinguishes between two different situations when the Non-
Circular attribute is called:
NORMAL In the normal case, the attribute is called when
there is no ongoing fixed-point computation (i.e.,
IN_CIRCLE == false). It can then simply call its
compute() method and memoize the result. This is so
since when IN_CIRCLE == false, any attribute called by
the compute() method will return its final value.

BRIDGE If the attribute is called during an ongoing fixed-
point computation (i.e., IN_CIRCLE == true), any down-
stream Circular attribute will, by definition, belong to
a separate fixed-point component. We say that the Non-
Circular attribute serves as a bridge between the up-
stream and any downstream components. A downstream
component should run its own fixed-point computation
for efficiency. This is accomplished by the NonCircu-
lar attribute stacking the state of the ongoing compo-
nent (i.e., the variables CHANGE and CIRCLE_ITER), and
setting IN_CIRCLE to false before calling its compute()
method. If a Circular attribute is encountered during the
compute() call, it will start its own fixed-point compu-
tation, and finish this computation before returning its
value. After the compute() call, the stacked variables are
restored, and IN_CIRCLE is set to true again.
Figure 4 shows an example. Here, the NonCircular

attribute 𝑏 serves as a bridge between the components
{𝑎1, 𝑎2, 𝑎3, 𝑎4} and {𝑐1, 𝑐2}. Suppose the evaluation starts by a
call to 𝑎1, which will become the driver of the {𝑎1, 𝑎2, 𝑎3, 𝑎4}
component. When 𝑎2 calls 𝑏 in the first iteration, the com-
ponent will be stacked. Then 𝑏 calls 𝑐1 which becomes the

61



Efficient Demand Evaluation of Fixed-Point Attributes using Static Analysis SLE ’24, October 20–21, 2024, Pasadena, CA, USA

driver of a new fixed-point loop for {𝑐1, 𝑐2}. This component
will loop until 𝑐1 is finalized and memoized, and then re-
turn control to 𝑏. Then 𝑏 will compute and memoize its own
value, pop the {𝑎1, 𝑎2, 𝑎3, 𝑎4} component, and return control
to 𝑎2. In the second iteration of {𝑎1, 𝑎2, 𝑎3, 𝑎4}, calling 𝑏 will
directly return 𝑏’s memoized value.
If the NonCircular 𝑏 attribute did not stack the compo-

nent state and set IN_CIRCLE to false, its call to compute()
might yield only an approximation rather than a final value,
so it would not be safe to memoize 𝑏’s value here. Essen-
tially, this would lead to the evaluation of all the attributes
{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏, 𝑐1, 𝑐2} in a big monolithic fixed-point loop,
driven by 𝑎1. The NonCircular algorithm in Listing 2 thus
has two advantages over a non-stacking variant of the algo-
rithm: it will separate circular components, and it will avoid
evaluating the NonCircular attribute more than once.

3.6 The Agnostic Subalgorithm

Agnostic attributes use the subalgorithm in Listing 3. They
may be part of a cycle, but only as followers, never as dri-
vers. We can thus assume that any cycle that contains an
Agnostic attribute instance also contains a Circular at-
tribute instance to act as the driver. (If an Agnostic attribute
is on a cycle without any Circular attribute, the evaluation
algorithm raises an error, cf. Appendix A.2.)
In the following, we explicitly note several differences

to the previous algorithms that we discuss further in Sec-
tions 3.6.1, 3.6.2, and 3.6.3.
Note 1 : Agnostic attributes have no bottom values. If they
are in a cycle, we compute their first approximations from
the bottom values of the Circular attributes on the cycle.
The algorithm distinguishes between three situations

when an Agnostic attribute is called:

NORMAL This case is similar to the corresponding case for
NonCircular attributes, i.e., there is no ongoing fixed-
point computation (IN_CIRCLE == false). The attribute
will call its compute() method and memoize its result.
Note 2 : Since the Agnostic attribute may be on a cycle,
it may be revisited by another downstream call.

FOLLOWS This case is similar to the corresponding case for
Circular attributes. It occurs when there is an ongo-
ing cycle (IN_CIRCLE == true), and its recorded iter-
ation is different from the current one (attr_iter !=
CIRCLE_ITER). In this case, the attribute’s compute()
method is called to compute a new approximation.
Note 3 : Unlike a Circular attribute, an Agnostic at-
tribute does not compare its current value against the
previous one and never updates the CHANGE flag.
Note 4 : Unlike a Circular attribute, an Agnostic at-
tribute updates its attr_iter after the call to compute().

ALREADY HANDLED This case is similar to the corresponding
one for Circular attributes. Here, there is an ongoing
cycle (IN_CIRCLE == true), and the recorded iter is the

same as the current one (attr_iter == CIRCLE_ITER). In
this case, the attribute is already computed in the current
iteration, and it simply returns its current approximation
without computing a new one, thus ending the recursion.
The four properties that we noted above affect the perfor-

mance and correctness of the algorithm, as we detail below.

3.6.1 An Agnostic Attribute Has No Explicit Bottom

Value. Since Agnostic attributes have no explicit bottom
value (see Note 1 ), they must not end up in the ALREADY
HANDLED case without first having computed an approxi-
mate value. We can see that this cannot happen, because
attr_iter == CIRCLE_ITER can happen only if the eval-
uation previously has passed through all of the FOLLOWS
code, where attr_iter is set to CIRCLE_ITER, meaning that
the value has been set. For this reason, it is important that
attr_iter is set to CIRCLE_ITER after the call to compute(),
and not before (see Note 4 ).

3.6.2 An Agnostic Attribute Does Not Set the CHANGE
Flag. A new approximate value of an Agnostic attribute
cannot depend on itself unless this dependency goes via
one or more Circular attributes. The Agnostic attribute
can only get a new approximation if at least one of these
Circular attributes has a new value. But if it has, it will
have set the CHANGE flag. Therefore, the Agnostic attribute
does not need to set the CHANGE flag (see Note 3 ). This also
means that if there is an iteration where the CHANGE flag was
not set, i.e., the fixed-point computation has completed, also
the Agnostic attribute will have its final value.

3.6.3 An Agnostic Attribute Executing the NORMAL
Case May Be Revisited Downstream. If an Agnostic
attribute is on a cycle, but called from outside of circular
evaluation, a Circular attribute on the cycle will drive the
fixed-point evaluation. The Agnostic attribute will then
start by executing the NORMAL case, but as a part of this
computation, be recursively called (see Note 2 ). When the
fixed-point evaluation has started, the Agnostic attribute
will enter the FOLLOW code in each iteration, and compute a
new approximation. When the fixed-point evaluation termi-
nates, the Agnostic attribute will also have been iterated
to its final value, as explained in the previous Section 3.6.2.
When the evaluation returns to the Agnostic call executing
the NORMAL case, it is therefore safe to memoize the attribute.

4 Static Analysis to Identify NonCircular

Attributes

For an attribute that is not declared as Circular, we have the
option of either declaring it as Agnostic or as NonCircular.
Using an Agnostic attribute has the advantage that it is
safe to use, even if it is on a cycle (as long as there is some
Circular attribute on the cycle).
However, an Agnostic attribute can be quite inefficient

if it is called from an upstream cycle, but is not itself on a

62



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Idriss Riouak, Niklas Fors, Jesper Öqvist, Görel Hedin, and Christoph Reichenbach

reachable1 reachable2 reachable3

successors1 successors2 successors3

... ... ...

C C C

A A A

Figure 5. Dynamic dependency graph for the state machine
example in Figure 1. C=Circular, A=Agnostic.

cycle. In this case, the upstream cycle will have a Circular
attribute that drives a fixed-point loop, and the Agnostic
attribute will be evaluated once for each iteration of this
loop. Since the Agnostic attribute is not on any cycle in this
particular case, each of these evaluations will result in the
same value, resulting in unnecessary work.

As an example, this situation occurs for our state machine
example from Figure 1. Suppose the successors attribute, as
well as all its downstream attributes that compute the name
analysis, are declared as Agnostic. In this case, we get the
dependency graph shown in Figure 5. If the evaluation starts
in reachable1, each of the successors attributes, as well
as all their downstream attributes, will be re-evaluated once
per iteration during each of the 𝑛 fixed-point iterations of
reachable1. This can potentially be very inefficient, leading
to all downstream attributes being recomputed 𝑛 times.

Another kind of inefficiency is due to different fixed-point
components. If the two components in Figure 4 were sep-
arated by an Agnostic rather than by a NonCircular at-
tribute, and evaluation starts in the upstream component,
then the evaluation could not be done separately for the two
components. Instead, all the attributes would be evaluated
in a big monolithic component, which is less efficient.
Both these inefficiencies would be avoided if we used

NonCircular attributes instead of Agnostic ones. However,
we only want to use NonCircular attributes if we are sure
that they will never be on any cycle, for any possible AST.
To solve this problem, we have implemented a tool CAT

(https://github.com/idrissrio/cat), that we use to analyze the
static call graph of a RAG. We use this analysis to identify
attributes that can safely be declared as NonCircular.

4.1 Approach Overview

CAT is a general call graph analysis tool for Java, and we use
it to analyze the Java code that is generated from a JastAdd
RAG specification. An overview of our approach is shown
in Figure 6. Initially, the RAG specification is fed into the
JastAdd metacompiler, which generates the corresponding
evaluation code in Java, using the subalgorithms described
in Section 3. We use the Agnostic code as the default for
attributes without annotations. Then, CAT analyses the gen-
erated evaluation code and computes the corresponding call
graph. In this call graph, method declarations are nodes, and
edges represent method calls. The CAT tool uses this call

RAGs
Specification

Evaluation
Code

JastAdd
Compiler

CAT

Callgraph
Analysis Tool

Optimised 
Evaluation 

Code

input

Meta
Data

JastAdd
Compiler

+
Optimisation

flags

generates
input

generates

input

generates

input

Figure 6. Overview over our approach. The JastAdd meta-
compiler generates Java code from a RAG specification. CAT
determines which attributes may be NonCircular and feeds
this information into a second run of JastAdd that can then
generate more efficient evaluation code.

graph to identify what attributes can safely be declared as
NonCircular, and outputs this information as a meta data
file. Then JastAdd is run again, this time with the meta
data as additional input and with some optimization flags
enabled. JastAdd uses this extra information to generate
optimized evaluation code where as many as possible of the
unannotated attributes use the NonCircular subalgorithm
instead of the Agnostic one.

4.2 Call Graph Construction

A call graph is a directed graph that represents the calling
relationships between methods in a program. We say that
a call graph is sound if it contains all the possible method
calls that can occur at runtime. One of the main challenges
in constructing a sound call graph is effectively managing
dynamic dispatch, which is the capability to dynamically
choose the method to call based on the runtime type of the
receiver object. CAT handles dynamic dispatch by using a
technique called Class Hierarchy Analysis (CHA) [8]. CHA is
a context- and flow-insensitive analysis, meaning that it does
not consider the context of the method calls and it does not
consider the order of the statements in the program. A key
aspect of CHA is that given a method call on a receiver object
of a certain type, it considers all the possible subclasses of
that type, and includes all the methods in these subclasses
in the call graph. This way, CHA ensures that all possible
method calls are included in the call graph, even if the exact
type of the receiver object is not known at compile time.

4.3 Identifying Non-Circular Attributes

Since we are interested in how attributes call each other, we
start by constructing a filtered call graph that only includes
methods that correspond to attributes. We first obtain this
set of methods from annotations generated by the JastAdd
metacompiler, and then project all paths from the original
call graph onto the filtered one.

To identify non-circular attributes, we employ Tarjan’s al-
gorithm [37] on the filtered call graph to discover all strongly
connected components (SCCs). A SCC constitutes a set of

63

https://github.com/idrissrio/cat


Efficient Demand Evaluation of Fixed-Point Attributes using Static Analysis SLE ’24, October 20–21, 2024, Pasadena, CA, USA

State.reachable

State.successors

...

/* — Generated Code — */

Set <State > reachable_compute (){

Set <State > result =

new HashSet <State >();

for (State s : successors ()) {

result.add(s);

result.addAll(s.reachable ());

}

return result;

}

SCC1

SCC2

Figure 7.Call graph between attributes for the state machine
language (left), and corresponding compute method (right).
Dashed rectangles represent strongly connected components
(SCC). Green methods are in the filtered call graph. Red
methods are other methods in the original call graph.

nodes in a directed graph where each node is reachable from
every other node in the set.
Given the SCCs, we can safely mark an attribute 𝑛 as

NonCircular if both of the following conditions hold:
1. 𝑛 is in an SCC with only a single node, and
2. 𝑛 does not directly call itself (no self-loop).

These attributes can never be circular for any AST. Attributes
not marked as NonCircular by CAT, and not explicitly
marked as Circular, are by default considered Agnostic.

To illustrate our approach, we revisit the state machine ex-
ample from Section 2. Figure 7 shows a part of the call graph,
and the compute()method for the reachable attribute that
was used to generate it. The SCC analysis of the call graph
identifies two distinct SCCs: SCC1 and SCC2. We see that the
attribute State.successors can be declared as NonCircu-
lar, as both conditions 1 and 2 are met. Conversely, we see
that the attribute State.reachable cannot be declared as
NonCircular, since there is a self-loop in the graph, vio-
lating condition 2. This is expected since State.reachable
is declared as Circular in the RAG, and instances of it are
indeed on a cycle in the example in Figure 5.

4.4 Imprecision and Limitations

CAT is unsound on Java code that uses reflection, native
calls, or dynamic class loading. Since CAT only analyzes code
that JastAdd generates from RAG specifications, and since
existing RAG specifications in JastAdd have not made use
of these Java features, we currently expect that the practical
significance of this limitation is minimal.

An important imprecision arises from attribute instances
that recursively call other instances of the same attribute
along the AST structure, but without being cyclic. An ex-
ample would be when all calls between instances of the
same attribute go downwards to children. The static approx-
imation of the call graph will then be cyclic, whereas any
dynamic instance of this part of the graph will be acyclic.
Since our approach can be adapted to any type of call

graph, we expect that more precise call graphs can mitigate

this imprecision, help identify more attributes as NonCir-
cular, and thus further improve performance.
Another limitation of our approach is that the algorithm

does not distinguish between different dynamic instances of
the same static SCC. Generalizing the algorithm to detect
dynamic SCCs at evaluation time, and investigating if this
pays off in practice, is an interesting line of future research.

5 Evaluation

In this section, we present the evaluation performance of
the three algorithms: BasicStacked, RelaxedMonolithic,
and RelaxedStacked. We evaluated the RelaxedStacked
algorithm across three distinct case studies: the construction
of an LL(1) parser, the ExtendJ Java compiler, and IntraJ,
an extension of the ExtendJ frontend for data-flow analy-
sis. This section presents the findings for the LL(1) parser
construction and IntraJ case studies, as the results for the
ExtendJ case study, detailed in Appendix B, alignwith expec-
tations and do not offer additional insights. For the IntraJ
case study, we evaluate both a forward and a backward analy-
sis. We exclude the BasicStacked algorithm from the second
and third case studies, as it requires all attributes on a cycle to
be declared Circular, which is impractical for complex ap-
plications like ExtendJ and IntraJ. When RelaxedStacked
is evaluated, we use the CAT tool to automatically infer what
attributes can be declared as NonCircular.
The first case study is included to demonstrate that the

RelaxedStacked algorithm does not introduce any perfor-
mance degradation for this application. On the other hand,
with the IntraJ case study we demonstrate the advantages
of the RelaxedStacked algorithm for more complex appli-
cations and for analyses in on-demand settings.
In all of these case studies, the specification includes a

cache configuration, i.e., a specification of which attributes
to memoize and which to reevaluate on each access. We
used the cache configuration supplied by each respective
tool, as the optimization of this aspect is a separate research
challenge [1, 32].

5.1 Evaluation Setup

System Configuration. Our experiments were con-
ducted on a machine with an Intel Core i7-11700K CPU
running at 3.60GHz and equipped with 128 GB RAM. Thema-
chine ran Ubuntu 22.04.3 and the benchmarks were executed
using OpenJDK Runtime Environment Zulu 8.50.0.53-CA-
linux64, build 1.8.0_275-b01. Additionally, for all evaluations,
we fixed the Java Virtual Machine (JVM) heap size to 8 GB.

Evaluation Methodology. The measurements were con-
ducted separately for start-up performance on a cold JVM,
involving a JVM restart for each run, and for steady-state per-
formance, with a single measurement taken after 49 warmup
runs. Each benchmark iteration was repeated 25 times, re-
sulting in a total of 1250 runs for steady-state measurements.

64



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Idriss Riouak, Niklas Fors, Jesper Öqvist, Görel Hedin, and Christoph Reichenbach

Table 1. Evaluated Java benchmarks, including number of
lines of code, number of methods, and version.

Benchmark Name LOC #Methods Version

antlr 36525 2070 2.7.2
pmd 60749 5325 4.2.5
struts 81394 7023 2.3.22
fop 102746 8318 0.95
extendj 147265 16025 11.0
castor 235745 12643 1.3.3
weka 245719 14952 revision 7806

poi 329366 23816 3.11

Table 2. Startup performance for the Java 1.2 grammar.

Basic- Basic- Relaxed- Relaxed-
Stackedold Stacked Monolithic Stacked
4.24±0.12 ms 2.92±0.05 ms 8.30±0.12 ms 2.93±0.03 ms

For steady-state measurements, we introduced a 300-second
timeout since RelaxedMonolithic took a long time to run
for some benchmarks. If any of the 49 warmup runs exceeded
300 seconds, we terminated the evaluation process for that
particular steady-state measurement, disregarding the re-
maining warmup runs. The reported metrics include the
median values and 95% confidence intervals. We checked
the correctness of all three case studies by comparing their
results to those from the original tools.

Benchmarks. Table 1 shows the Java benchmark projects
for the IntraJ and ExtendJ case studies. They include
projects from the DaCapo [4] and Qualitas [38] suites, e.g.,
antlr and jfreechart, and projects that we selected to
cover a wide range of applications, including the generated
Java source code of ExtendJ itself.
The artifact for running all the experiments is available

online [27].

5.2 Case Study: LL(1) Parser Construction

LL(1) parsers can be generated by computing the nullable,
first, and follow sets for a context-free grammar [2]. Nor-
mally, these sets are computed by hand-written fixed-point
algorithms. Magnusson et. al. [22] instead formulated the
computation as circular attributes. We use the RAG spec-
ification from their artifact [23] to evaluate our different
algorithms. For comparison, we also ran the original imple-
mentation from that artifact (BasicStackedold).
Table 2 shows the startup performance results for com-

puting nullable, first, and follow sets for a Java 1.2 gram-
mar with 155 terminals and 332 productions. We can see
that BasicStacked shows a performance improvement of
4.24
2.92 =∼1.45x over BasicStackedold, confirming the efficacy
of the improvements that we introduced for BasicStacked in
Section 3.2. Furthermore, RelaxedStacked performs as well
as BasicStacked, and is significantly faster than Relaxed-
Monolithic, with a speedup of 8.30

2.93 =∼2.8x. One reason for

CFGNode.in

CFGNode.out

CFGNode.pred

...

CFGNode.in

CFGNode.out CFGNode.succ

...

Figure 8. Static call graph for forward (left) and backward
(right) analysis.

this is that RelaxedStacked is able to compute follow in a
separate fixed-point component than first and nullable.

5.3 Case Study: IntraJ

IntraJ [28] is a dataflow analyser for Java built as an ex-
tension of the ExtendJ Java compiler. It currently supports
detecting two kinds of dataflow bugs: null-pointer derefer-
ences and dead assignments. The analyses implemented in
IntraJ are instances of the Monotone frameworks [24].

Monotone frameworks are a theoretical approach for rea-
soning about program dataflow properties. This approach
provides a flexible and generic framework for expressing
and solving dataflow equations, which can be used to rea-
son about a wide range of dataflow properties, e.g., reaching
definitions and available expressions analyses.

The dataflow information is propagated through the pro-
gram using the control-flow graph (CFG), available with the
functions 𝑝𝑟𝑒𝑑 (predecessors) and 𝑠𝑢𝑐𝑐 (successors). To prop-
agate information from node 𝑛 to its succeeding nodes (in
the CFG) and to represent the effect of passing through a
node we use the following equations:

in(𝑛) =
⊔

𝑝∈pred(𝑛)
out(𝑝) (1)

out(𝑛) = 𝑓tr (in(𝑛), 𝑛) (2)

out(𝑛) =
⊔

𝑝∈succ(𝑛)
in(𝑝) (3)

in(𝑛) = 𝑓tr (out(𝑛), 𝑛) (4)
Equations (1) and (2) are used to propagate information

from the predecessors of a node 𝑛 to 𝑛 itself. Each instanti-
ation or implementation of these equations corresponds to
a forward analysis. Similarly, the equations (3) and (4) are
used to propagate information backward in the CFG. The
function 𝑓tr is called the transfer function of the analysis and
captures the effect of passing through a node in the CFG.
In IntraJ, 𝑖𝑛, 𝑜𝑢𝑡 , 𝑠𝑢𝑐𝑐 , and 𝑝𝑟𝑒𝑑 are represented by at-

tributes. Figure 8 shows the static call graphs for a forward
and a backward analysis. In both graphs, the CFGNode class
represents a node in the CFG. The attributes CFGNode.in
and CFGNode.out are circular and require a fixed-point com-
putation to compute their values. Our tool CAT will detect
that both CFGNode.pred and CFGNode.succ can never be
on a cycle and can thus be declared as NonCircular.

Performance. For IntraJ we conducted the evaluation on
two dataflow analyses, namely the null-pointer dereference
and the dead assignment analyses. The null-pointer deref-
erence analysis detects expressions that may cause a null-
pointer dereference. The dead assignment analysis detects
assignments that are never used. Both the analyses are mono-
tone frameworks, with the difference that the null-pointer

65



Efficient Demand Evaluation of Fixed-Point Attributes using Static Analysis SLE ’24, October 20–21, 2024, Pasadena, CA, USA

Table 3. Performance of Dead Assignment Analysis and Null-Pointer Dereference Analysis, comparing RelaxedMonolithic
and RelaxedStacked in startup and steady state. The symbol indicates that the analysis timed out after 300 seconds.

Dead Assignment Analysis Null-Pointer Dereference Analysis
Start up Steady State Start up Steady State

Bench- Relaxed- Relaxed- Relaxed- Relaxed- Relaxed- Relaxed- Relaxed- Relaxed-
mark Monolithic Stacked Monolithic Stacked Monolithic Stacked Monolithic Stacked

Time (s) Time (s) Speedup Time (s) Time (s) Speedup Time (s) Time (s) Speedup Time (s) Time (s) Speedup
antlr 3.16±0.07 1.83±0.03 × 1.73 ↑ 1.42±0.01 0.51±0.01 × 2.78 ↑ 28.09±0.28 2.48±0.06 × 11.34 ↑ 26.74±0.09 0.73±0.01 × 36.65 ↑
pmd 6.49±0.12 3.48±0.05 × 1.86 ↑ 3.61±0.02 1.39±0.02 × 2.60 ↑ 32.36±0.20 4.46±0.09 × 7.26 ↑ 28.14±0.10 1.73±0.01 × 16.24 ↑
struts 9.32±0.18 5.31±0.09 × 1.75 ↑ 5.18±0.07 2.17±0.06 × 2.38 ↑ 66.97±0.85 6.42±0.10 × 10.43 ↑ 61.74±0.74 3.54±0.14 × 17.45 ↑
fop 8.38±0.09 4.74±0.05 × 1.77 ↑ 5.57±0.03 2.08±0.09 × 2.68 ↑ 83.52±0.26 6.04±0.09 × 13.84 ↑ 79.12±0.06 2.99±0.08 × 26.48 ↑
extendj 40.88±0.74 16.11±0.21 × 2.54 ↑ 37.16±0.66 12.94±0.35 × 2.87 ↑ 1510.75±5.99 13.04±0.08 × 115.87 ↑ ≥ 300.00 9.55±0.08 ≥ 31.42 ↑
castor 11.10±0.25 6.89±0.14 × 1.61 ↑ 6.96±0.04 3.16±0.15 × 2.21 ↑ 143.99±4.06 8.54±0.27 × 16.85 ↑ 137.35±1.85 4.59±0.13 × 29.93 ↑
weka 28.12±0.09 12.93±0.12 × 2.17 ↑ 23.50±0.20 9.31±0.19 × 2.52 ↑ 475.89±2.66 17.21±0.45 × 27.65 ↑ ≥ 300.00 11.88±0.32 ≥ 25.25 ↑
poi 34.63±0.23 16.17±0.12 × 2.14 ↑ 27.85±0.25 11.14±0.08 × 2.50 ↑ 571.56±4.47 21.14±0.16 × 27.03 ↑ ≥ 300.00 15.32±0.08 ≥ 19.59 ↑

dereference analysis is a forward analysis (see equations (1)
and (2)), while the dead assignment analysis is a backward
analysis (see equations (3) and (4)).
Each analysis is done by querying an attribute in IntraJ

that collects all warnings in the benchmark program. This
attribute will in turn demand the dataflow in/out attributes,
which in turn demand the pred/succ attributes. These at-
tributes may in turn demand name- and type analysis at-
tributes as defined by the underlying compiler ExtendJ.
Thus, in these analyses, many attributes will be demanded
downstream from the circular dataflow attributes. It is there-
fore expected that RelaxedStacked will perform better than
RelaxedMonolithic.
Table 3 shows the performance of the Relaxed-

Monolithic and RelaxedStacked algorithms for both the
dead assignment and the null-pointer dereference analyses.
The start up measurements include both parsing and analy-
sis and the steady state measurements include only analysis.
The results show significant performance improvements for
the RelaxedStacked algorithm compared to the Relaxed-
Monolithic algorithm. For dead assignment analysis, the
startup speedup of RelaxedStacked ranges from ∼1.7x to
∼2.5x, with a median speedup of around ∼1.8x. In steady-
state, the speedup becomes even more significant, ranging
from ∼2.2x to ∼2.8x, with a median speedup of around ∼2.5x.
One reason for the speedup is that RelaxedMonolithic
will compute the control-flow graph (succ and its down-
stream attributes) in each fixed-point iteration, whereas for
RelaxedStacked succ will be classified as NonCircular,
and will only be computed once.

For null-pointer dereference analysis, the results show an
even more significant improvement for RelaxedStacked,
with a speedup between ∼7x and ∼115x for startup perfor-
mance, with a median of ∼15.3x. For steady state perfor-
mance, the speedup was between ∼16x and ∼35x, with a me-
dian of∼22x, disregarding 3 measurements that timed out for
RelaxedMonolithic. The reason for the larger difference
and variation is that this is a forward analysis which uses

the pred() attribute which is defined as the reverse of the
successor, leading to even more downstream attributes be-
ing unnecessarily reevaluated for the RelaxedMonolithic
algorithm. We can observe an extremely high speedup for
the extendj benchmark, where the RelaxedStacked algo-
rithm is approximately 115 times faster than the Relaxed-
Monolithic algorithm. Upon closer inspection, we discov-
ered that the extendj benchmark has a very large generated
method for parsing Java source code, consisting of 6844 lines
of code, and where the problems of RelaxedMonolithic
become particularly pronounced.

The experiments in Table 3 analyze complete benchmark
programs. To further demonstrate the on-demand nature
of the algorithms, we ran the analyses on sets of randomly
selected methods, querying an attribute summarizing the
results for each of the selected methods. For each benchmark,
we randomly selected 10, 20, 50, 100, and 200 methods to run
the experiment, and report the steady-state performance of
the analyses. We present the results exclusively for pmd as
findings across other projects are similar. Figure 9 shows the
results for the null-pointer dereference analysis. We report
both the execution time and the number of times a succ
attribute was evaluated, and it can be observed that these
metrics correlate closely. We can also note that the speedups
for RelaxedStacked are consistent with the earlier results
in Table 3 running on the whole benchmark, approaching
similar numbers as the number of methods increases. This
experiment demonstrates the on-demand nature of the algo-
rithms, resulting in very short response times when only a
subset of the results are demanded, and with similar perfor-
mance profiles as for the complete programs.

6 Related Work

Knuth’s original attribute grammars [20] disallowed cyclic
dependencies. Farrow [13] and Jones et al. [19] indepen-
dently introduced circular but well-defined attribute gram-
mars. Farrow’s approach statically analyzes dependencies,

66



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Idriss Riouak, Niklas Fors, Jesper Öqvist, Görel Hedin, and Christoph Reichenbach

Figure 9. Steady-state performance of null-pointer derefer-
ence analysis for randomly selected sets of methods of the
pmd benchmark. Solid lines represent execution time (left
axis, seconds). Dashed lines represent successor attribute
evaluations (right axis, count).

while Jones’ relies on a dynamic dependency graph to iden-
tify strongly connected components and supports incremen-
tal evaluation. Sasaki and Sassa extend attribute grammars
with remote links [29], a restricted form of reference at-
tributes, and describe exhaustive circular evaluation over
them. In contrast to our work, none of these approaches
support demand evaluation, nor general reference attributes.
Sasaki and Sassa’s remote links must be set before evaluation,
i.e., may not be computed by attributes.

Boyland describes demand-driven evaluation for circular
attributes in the presence of so-called remote attributes (sim-
ilar to reference attributes), but gives no explicit evaluation
algorithm [5]. Hesamian recently added statically scheduled
support for circular attributes to Boyland’s remote attribute
system APS [16]. However, this implementation is exhaus-
tive (not demand-driven) and the experimental results are
limited to comparatively small grammars and synthetic input.
The largest grammar in this work is the nullable-first-follow
grammar fromMagnusson [22] that we discuss in Section 5.2.
Previous demand-driven algorithms for RAGs with cir-

cular attributes include BasicStackedold by Magnusson et
al. [22] and RelaxedMonolithic by Öqvist et al. [25, 26].
Our algorithm generalizes both. Öqvist further presents a
concurrent lock-free attribute evaluation algorithm based on
RelaxedMonolithic, while Söderberg et al. [33] present an
extension of BasicStacked to handle circular higher-order
attributes. Both contributions are orthogonal to the ones
presented here.

Kiama [30] and Silver [39] are two RAG systems that could
benefit from using the RelaxedStacked algorithm. Kiama
already supports circular attributes by implementing one of
the basic algorithms described by Magnusson et al. [22].

Logic programming, especially in Datalog, is the basis for
other declarative approaches to program analysis. Datalog-
based analysis frameworks include Doop [6], which supports
points-to analysis of Java bytecode, and the commercial .QL
system [7]. These generally follow a two-phase process that

first extracts program facts into a database and then evalu-
ates logical rules until it reaches a fixed point, though Dura
et al. describe how both phases can be integrated into a sin-
gle declarative framework [11]. While these approaches are
often limited to boolean lattices, Madsen et al. [21] demon-
strate a Datalog variant with support for general complete
finite-height lattices. Unlike our work, Datalog frameworks
generally use exhaustive evaluation, though some Datalog-
based tools use on-demand evaluation strategies based on
logical rule rewriting to use so-called Magic Sets [3], or hy-
brid strategies, as in the Clog framework [10], which com-
bines exhaustive evaluation with on-demand queries to a
compiler frontend.

Stein et al. present a general approach to demand-driven
abstract interpretation over a pre-computed CFG, with cyclic
computations over infinite-height domains [36], though their
experimental results are limited to synthetic workloads.
Other demand-driven approaches range from frameworks
for distributive interprocedural dataflow analysis [9, 18] to
points-to analysis for full languages like Java [34, 35]. It is
an area of future work to investigate how the RAG approach
can be applied to similar problems.

7 Conclusion

We have presented a new formulation of demand-driven
evaluation of Reference Attribute Grammars with circular
(fixed-point evaluated) attributes. Our approach integrates
three attribute kinds, Circular, Agnostic, and NonCir-
cular, in our new RelaxedStacked algorithm, improving
upon previous algorithms that only supported combining
Circular with either NonCircular or Agnostic attributes.
Our experiments show that effective use of NonCircu-

lar attributes is crucial to efficient evaluation. Since man-
ually selecting NonCircular attributes is challenging and
error-prone, we perform a call graph analysis on the RAG
to automatically identify NonCircular attributes, ensuring
correctness and efficiency.

We have evaluated the new algorithm on LL(1) parser con-
struction, on a Java compiler, and on two intraprocedural
dataflow analyses for Java. In the parser case study, Relaxed-
Stacked matched the performance of BasicStacked and
was 2.8x faster than RelaxedMonolithic. For the Java
compiler, RelaxedStacked matched the performance of
RelaxedMonolithic, which was expected since this appli-
cation contains few circular attributes. For the dataflow anal-
yses, we observed substantial speedups for RelaxedStacked
over RelaxedMonolithic: a 1.8x median improvement in
startup and 2.5x in steady-state for dead assignment analysis,
and 15.3x and 22x, respectively, for null-pointer dereference
analysis. We also conducted experiments by sampling results
from the benchmark programs, demonstrating that our al-
gorithm works efficiently even when only a subset of the
program’s results are demanded.

67



Efficient Demand Evaluation of Fixed-Point Attributes using Static Analysis SLE ’24, October 20–21, 2024, Pasadena, CA, USA

𝑎 𝑏 𝑐

NC NC NC
𝑑 𝑒 𝑓

C NC C

Figure 10. Attributes 𝑎, 𝑏, 𝑐 and 𝑒 are incorrectly specified
as NonCircular.

A Safe Evaluation of Incorrectly Specified

RAGs

This appendix details how a runtime error is raised if an
Agnostic or NonCircular attribute is incorrectly specified.

A.1 Safe Evaluation of Incorrectly Specified

NonCircular Attributes

It is important that the algorithms are safe in that they do not
compute the wrong result even if the developer incorrectly
declares an attribute as NonCircular, while for some AST,
it turns out to be effectively circular. Rather, a runtime error
should be raised in this case. In our algorithm, a NonCircu-
lar attribute on a cycle will lead to endless recursion, and
therefore raise a stack overflow error. As an alternative solu-
tion, it would be straightforward to extend the algorithm to
use one additional flag per NonCircular attribute instance
to track and report such circular dependencies. (The code
for this solution is elided for brevity.)
To see that the algorithm is safe in this respect, we can

consider two cases, as shown in Figure 10. In the left example,
all the attributes 𝑎, 𝑏, 𝑐 , are (incorrectly) declared as NonCir-
cular, although they are on a cycle. Suppose that evaluation
starts by calling 𝑎. All the attributes will take the NORMAL
branch in the algorithm, and just continue calling each other
in an endless recursion, eventually leading to stack overflow.

In the example to the right, the attribute 𝑒 is (incorrectly)
declared as NonCircular and the others (correctly) as Cir-
cular. Suppose that evaluation starts in one of the Circular
attributes, say 𝑑 . It will become a driver, start a fixed-point
evaluation, and start an iteration with a unique id, say 1. This
id is saved in its d_iter instance variable. When the evalu-
ation reaches 𝑒 , it takes the BRIDGE branch, and stacks the
current circular evaluation. The evaluation then reaches 𝑓
which will become the driver of a new fixed-point evaluation,
with a new unique iteration id, say 2. When the evaluation
reaches 𝑑 again, it will become a follower since circular eval-
uation is ongoing. It will call its compute method since its
stored iteration id (1) differs from the current one (2). When
the evaluation again reaches 𝑒 , it again takes the BRIDGE
branch, and stacks the current evaluation. The evaluation
continues this way, stacking cyclic evaluation for every visit
to the 𝑓 attribute, leading to endless recursion and eventually
stack overflow.
If the evaluation instead starts in the NonCircular 𝑒 , it

will first take the NORMAL branch, but at the next visit, it will
take the BRIDGE branch, and lead to the same kind of endless
recursion.

𝑎 𝑏

A A
𝑐 𝑑 𝑒

C A A

Figure 11. Attributes 𝑎, 𝑏, 𝑑 and 𝑒 are incorrectly specified
as Agnostic.

A.2 Safe Evaluation of Incorrectly Specified

Agnostic Attributes

If an Agnostic attribute is on a cycle without any Circular
attribute, the algorithmmust be safe in that it does not return
an incorrect value, but instead raises a runtime error. As for
the NonCircular attributes, we will use endless recursion,
i.e., stack overflow, to identify such an error. (As for Non-
Circular attributes, an alternative solution using a boolean
flag could be used, but elided here for brevity.)

To see that the algorithm is safe in this respect, we consider
two cases, as shown in Figure 11. In the left example, an
incorrectly specified Agnostic attribute 𝑎 is called from
outside any cyclic evaluation. It thus enters the NORMAL code,
and calls 𝑏, which also enters its NORMAL code. Then 𝑏 calls 𝑎
which again enters the NORMAL code. We see that this leads
to endless recursion and eventually stack overflow.
In the right example, an incorrectly specified Agnostic

attribute 𝑑 is called from inside a cyclic evaluation. Here,
the evaluation starts with the Circular attribute 𝑐 which
becomes the driver. When 𝑑 is reached, it will execute the
FOLLOWS code, and call 𝑒 . The 𝑒 attribute is also Agnostic,
and also executes the FOLLOWS code, and calls 𝑑 again. Since
the value of attr_iter for 𝑑 is unchanged, and thus still dif-
ferent from CIRCLE_ITER, the 𝑑 attribute will again execute
the FOLLOWS code, and we have endless recursion, eventually
leading to stack overflow. It is important that the attr_iter
is not set until after the call to compute to get this behavior
(relating to Note 4 in Section 3.6).

B Case Study: ExtendJ

ExtendJ [12] is a Java compiler supporting Java 11, built
using the metacompilation system JastAdd [15]. ExtendJ
uses the RelaxedMonolithic algorithm introduced by
Öqvist [25, 26]. It cannot be run with the BasicStacked
algorithm because it includes a number of attributes that are
effectively circular only on rare occasions, and that are not
declared as Circular. It can be run with our new Relaxed-
Stacked algorithm, but we do not expect big performance
differences. The reason is that ExtendJ has relatively few
circular attributes, and these are typically downstream from
the error checking and code generation attributes that drive
the attribute evaluation.

In Table 4 we present performance results for the ExtendJ
compiler, showing both startup and steady-state perfor-
mance for both RelaxedMonolithic and RelaxedStacked.
As expected, the results for the two algorithms are very
similar.

68



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Idriss Riouak, Niklas Fors, Jesper Öqvist, Görel Hedin, and Christoph Reichenbach

Table 4. Performance of ExtendJ compilation (in seconds)
of the benchmarks, comparing RelaxedMonolithic and
RelaxedStacked in startup and steady state.

Start up Steady State
Bench- Relaxed- Relaxed- Relaxed- Relaxed-
mark Monolithic Stacked Monolithic Stacked

Time (s) Time (s) Speedup Time (s) Time (s) Speedup
antlr 1.75±0.03 1.76±0.05 ≈ 0.42±0.00 0.42±0.00 ≈
pmd 4.03±0.07 4.03±0.08 ≈ 1.31±0.02 1.30±0.01 ≈
struts 5.32±0.16 5.14±0.16 ≈ 1.76±0.05 1.74±0.04 ≈
fop 4.99±0.19 4.96±0.15 ≈ 1.72±0.03 1.71±0.06 ≈
extendj 6.77±0.14 6.84±0.12 ≈ 3.92±0.10 3.90±0.04 ≈
castor 8.17±0.29 7.98±0.18 ≈ 3.31±0.09 3.20±0.03 ≈
weka 9.88±0.16 9.63±0.17 ≈ 4.77±0.34 4.63±0.09 ≈
poi 14.18±0.40 14.54±0.53 ≈ 8.00±0.10 7.86±0.06 ≈

References

[1] M. Abadi, B. W. Lampson, and J. Lévy. 1996. Analysis and Caching of
Dependencies (ICFP’96, 6). 83–91.

[2] A. W. Appel. 1998. Modern Compiler Implementation in C. Cambridge
University Press.

[3] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. 1986. Magic Sets and
Other Strange Ways to Implement Logic Programs (PODS’86). 1–15.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The
DaCapo Benchmarks: Java Benchmarking Development and Analysis
(OOPSLA’06). 169–190.

[5] J. T. Boyland. 1996. Descriptional Composition of Compiler Components.
Ph. D. Dissertation. University of California, Berkeley.

[6] M. Bravenboer and Y. Smaragdakis. 2009. Strictly declarative specifi-
cation of sophisticated points-to analyses (OOPSLA’09). 243–262.

[7] O. DeMoor, D. Sereni, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman,
N. Ongkingco, and J. Tibble. 2007. .QL: Object-oriented queries made
easy (GTTSE’07, LNCS 5235). 78–133.

[8] J. Dean, D. Grove, and C. Chambers. 1995. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis (ECOOP’95).
77–101.

[9] E. Duesterwald, R. Gupta, and M. L. Soffa. 1995. Demand-driven
Computation of Interprocedural Data Flow (POPL’95). 37–48.

[10] A. Dura and C. Reichenbach. 2024. Clog: A Declarative Language for
C Static Code Checkers (CC’24). 186–197.

[11] A. Dura, C. Reichenbach, and E. Söderberg. 2021. JavaDL: Automati-
cally Incrementalizing Java Bug Pattern Detection (OOPSLA’21). 1–31.

[12] T. Ekman and G. Hedin. 2007. The JastAdd extensible Java compiler
(OOPSLA’07). 147–152.

[13] R. Farrow. 1986. Automatic generation of fixed-point-finding evalua-
tors for circular, but well-defined, attribute grammars (CC’86). 85–98.

[14] G. Hedin. 2000. Reference Attributed Grammars. Informatica (Slovenia)
24, 3 (2000), 301–317.

[15] G. Hedin and E. Magnusson. 2003. JastAdd—an aspect-oriented com-
piler construction system. Sci. Comput. Program. 47, 1 (2003), 37–58.

[16] S. Hesamian. 2023. Statically Scheduling Circular Remote Attribute
Grammars. Ph. D. Dissertation. University of Wisconsin-Milwaukee.
Theses and Dissertations. 3383.

[17] S. Horwitz, A. J. Demers, and T. Teitelbaum. 1987. An Efficient General
Iterative Algorithm for Dataflow Analysis. Acta Inf. 24, 6 (1987), 679–
694.

[18] S. Horwitz, T. W. Reps, and S. Sagiv. 1995. Demand Interprocedural
Dataflow Analysis (FSE’95). 104–115.

[19] L. G. Jones and J. Simon. 1986. Hierarchical VLSI Design Systems
Based on Attribute Grammars (POPL’86). 58–69.

[20] D. Knuth. 1968. Semantics of Context-Free Languages. Math. Syst.
Theory 2, 2 (1968), 127–145.

[21] M. Madsen, M. Yee, and O. Lhoták. 2016. From Datalog to Flix: A
Declarative Language for Fixed Points on Lattices (PLDI’16). 194–208.

[22] E. Magnusson and G. Hedin. 2007. Circular reference attributed gram-
mars — their evaluation and applications. Sci. Comput. Program. 68, 1
(2007), 21–37.

[23] E. Magnusson and G. Hedin. 2007. CRAG artifact. https://bitbucket.
org/jastadd/crag-artifact. Accessed: 2024-09-12.

[24] F. Nielson, H. R. Nielson, and C. Hankin. 2010. Principles of Program
Analysis. Springer.

[25] J. Öqvist. 2018. Contributions to Declarative Implementation of Static
Program Analysis. Ph. D. Dissertation. Lund University, Sweden. http:
//lup.lub.lu.se/record/82b210fc-6d15-4f0a-82ff-24b024925d23

[26] J. Öqvist and G. Hedin. 2017. Concurrent circular reference attribute
grammars (SLE’17). 151–162.

[27] I. Riouak, N. Fors, J. Öqvist, G. Hedin, and C. Reichenbach. 2024. Effi-
cient Demand Evaluation of Fixed-Point Attributes Using Static Anal-
ysis (Artifact). https://doi.org/10.5281/zenodo.13365896

[28] I. Riouak, C. Reichenbach, G. Hedin, and N. Fors. 2021. A Precise
Framework for Source-Level Control-Flow Analysis (SCAM’21). 1–11.

[29] A. Sasaki and M. Sassa. 2003. Circular Attribute Grammars with
Remote Attribute References and their Evaluators. New Generation
Computing 22, 1 (2003), 37–60.

[30] A. M. Sloane, L. C. L. Kats, and E. Visser. 2013. A pure embedding of
attribute grammars. Sci. Comput. Program. 78, 10 (2013), 1752–1769.

[31] E. Söderberg, T. Ekman, G. Hedin, and E. Magnusson. 2013. Extensible
Intraprocedural Flow Analysis at the Abstract Syntax Tree Level. Sci.
Comput. Program. 78, 10 (2013), 1809–1827.

[32] E. Söderberg and G. Hedin. 2010. Automated Selective Caching for
Reference Attribute Grammars (SLE’10, LNCS 6563). 2–21.

[33] E. Söderberg and G. Hedin. 2015. Declarative rewriting through circu-
lar nonterminal attributes. Computer Languages, Systems & Structures
44 (2015), 3–23.

[34] J. Späth, L. N. Q. Do, K. Ali, and E. Bodden. 2016. Boomerang:
Demand-Driven Flow- and Context-Sensitive Pointer Analysis for
Java (ECOOP’16). 22:1–22:26.

[35] M. Sridharan, D. Gopan, L. Shan, and R. Bodík. 2005. Demand-Driven
Points-to Analysis for Java (OOPSLA’05). 59–76.

[36] B. Stein, B. E. Chang, and M. Sridharan. 2021. Demanded abstract
interpretation (PLDI’21). 282–295.

[37] R. Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput. 1, 2 (June 1972), 146–160.

[38] E. Tempero, G. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble. 2010. Qualitas Corpus: A Curated Collection of Java Code
for Empirical Studies (APSEC’10). 336–345.

[39] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. 2010. Silver: An exten-
sible attribute grammar system. Sci. Comput. Program. 75, 1-2 (2010),
39–54.

[40] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. 1989. Higher Order
Attribute Grammars (PLDI’89). 131–145.

69

https://bitbucket.org/jastadd/crag-artifact
https://bitbucket.org/jastadd/crag-artifact
http://lup.lub.lu.se/record/82b210fc-6d15-4f0a-82ff-24b024925d23
http://lup.lub.lu.se/record/82b210fc-6d15-4f0a-82ff-24b024925d23
https://doi.org/10.5281/zenodo.13365896

	Abstract
	1 Introduction
	2 Reference Attribute Grammars with Circular Attributes
	3 Circular Attribute Algorithms
	3.1 Preliminaries
	3.2 Attribute Declarations and Main Algorithms
	3.3 Subalgorithms and Variables
	3.4 The Circular Subalgorithm
	3.5 The NonCircular Subalgorithm
	3.6 The Agnostic Subalgorithm

	4 Static Analysis to Identify NonCircular Attributes
	4.1 Approach Overview
	4.2 Call Graph Construction
	4.3 Identifying Non-Circular Attributes
	4.4 Imprecision and Limitations

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Case Study: LL(1) Parser Construction
	5.3 Case Study: IntraJ

	6 Related Work
	7 Conclusion
	A Safe Evaluation of Incorrectly Specified RAGs
	A.1 Safe Evaluation of Incorrectly Specified NonCircular Attributes
	A.2 Safe Evaluation of Incorrectly Specified Agnostic Attributes

	B Case Study: ExtendJ
	References

