
Using Static Analysis to Improve the Efficiency of Program Analysis

Idriss Riouak, Lund University, Lund, Sweden

ABSTRACT

Declarative approaches to program analysis promise a number of
practical advantages over imperative approaches, from eliminating
manual worklist management to increasing modularity. Reference
Attribute Grammars (RAGs) are one such approach. One particu-
lar advantage of RAGs is the automatic generation of on-demand
implementations, suitable for query-based interactive tooling as
well as for client analyses that do not require full evaluation of
underlying analyses. While historically aimed at compiler frontend
construction, the addition of circular (fixed-point) attributes make
them suitable also for dataflow problems. However, we demonstrate
that previous algorithms for on-demand circular RAG evaluation
can be impractical and/or inefficient for dataflow analysis of real
programming languages like Java. We propose a new demand algo-
rithm for attribute evaluation that addresses these weaknesses, and
apply it to a number of real-world case studies. Our results show a
significant improvement in the performance of the generated code,
with a median steady-state performance speedup of ∼2.5x for a
dead-assignment analysis and ∼18x for a null-pointer dereference
analysis.

1 INTRODUCTION

Static program analysis is a key part of modern compilers, optimiz-
ers, bug- and vulnerability detectors, and many other software tools.
After first deriving facts from program code, many analyses rely
on a fixed-point computation over some lattice to find a solution to
a mutually dependent equation system [5]. Typically, this compu-
tation is either data-driven, exhaustively computing all derivable
facts, or on demand, computing only the facts necessary to answer a
particular query. Demand evaluation can substantially outperform
data-driven exhaustive analysis when the analysis client asks for
only a subset of the analysis results, e.g., for a dead code elimina-
tion analysis that uses constant folding only to evaluate branch
conditions or for interactive tools that use bug detectors only to
check the visible part of a program.

Reference Attribute Grammars (RAGs) [10] are a high-level
declarative formalism for specifying static program analyses in
terms of attributes, i.e., properties associated with program nodes.

RAGs support the declarative specification of dataflow and sim-
ilar fixed-point problems through the use of circular attributes,
i.e., attributes that are allowed to depend (transitively) on them-
selves [16]. The use of references and circular attributes makes it
possible to specify demand analyses on graphs that are themselves
computed on demand.

A general efficient approach for solving a fixed-point equation
system is to identify the strongly-connected components of the
dependency graph, and iterate each component separately, visiting
them in a data-driven topological order [13]. However, for RAGs (in

Supervisors: Niklas Fors, Görel Hedin, and Christoph Reichenbach.
This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

contrast to AGs), the dependency graph is not known a priori (be-
fore evaluation starts), since many dependencies follow the graphs
constructed from the computed reference attributes.

Circular attributes were originally proposed for Knuth attribute
grammars by Farrow [9] and Jones et al. [14], and used data-driven
algorithms. The original demand algorithm for circular attributes
in RAGs was proposed by Magnusson et al. [16]. It could isolate
certain strongly connected components to achieve fast fixed-point
computation. However, this algorithm requires the developer to ex-
plicitly declare all attributes as circular that can be on a dependency
cycle for some AST. This can be both impractical and inefficient for
large-scale systems. Öqvist proposed a relaxed version of the algo-
rithm to avoid these problems, requiring only one of the attributes
on any cycle to be declared as circular [17]. While this algorithm
can work well for some applications, it introduces a significant
overhead for attributes that are not on a cycle.

In this paper, we propose a new evaluation algorithm for RAGs to
overcome the drawbacks of the previous algorithms. Our algorithm
combines ideas from the two earlier algorithms, and additionally
provides a technique to statically identify attributes that are guar-
anteed to never be on a cycle.

While our work builds on RAGs, the algorithms are general in
that they can be applied to implement any system that exposes a
demand analysis as an observationally pure query API on a graph
of nodes (e.g., an abstract syntax tree or an abstract syntax graph).
Many recent compilers are built using such a query-based architec-
ture, including Microsoft’s Roslyn platform1 and the rustc com-
piler for Rust2. We believe that our algorithms could also be useful
for solving fixed-point problems in such systems.

We have implemented our new algorithm in the JastAddmetapro-
gramming system [11], a system that supports RAG specifications
and generates implementations in the form of Java code. Our ap-
proach uses the call graph for the generated Java code to identify
attribute declaration dependencies and to conservatively identify
potential cycles. This information is then used by JastAdd to gen-
erate more efficient evaluation code.

We start by giving an overview of existing algorithms for demand-
driven evaluation of RAGs (Section 2). We then present our contri-
butions:

• We introduce our new attribute evaluation algorithm (Section 2).
• We propose a novel approach to conservatively identify depen-

dencies in RAGs based on the call graph of the generated evalua-
tion code and explain how this can be used by our new algorithm
to speed up evaluation (Section 3).

• We evaluate our approach on a set of real-world case studies. Our
evaluation shows that our approach can significantly improve
the performance of the generated evaluator (Section 4).

We then discuss related work (Section 5). Finally, we conclude
the paper (Section 6).

1https://github.com/dotnet/roslyn
2https://rustc-dev-guide.rust-lang.org

Riouak I.

2 CIRCULAR ATTRIBUTE ALGORITHMS

This section describes our on-demand algorithms, i.e., Relaxed-
Stacked, for attribute evaluation in the presence of circular at-
tributes. We start with some preliminaries, then we discuss the
exising algorithms, and we conclude with a description of our new
algorithm.

2.1 Preliminaries

For the purpose of attribute evaluation, we distinguish between
three kinds of attribute declarations: Circular, NonCircular, and
Agnostic:
Circular An instance of an attribute declared as Circular is

allowed to be effectively circular. A Circular attribute instance
will be evaluated by a fixed-point computation, and has an ex-
plicit bottom value.

NonCircular An instance of an attribute declared as NonCir-
cular is not allowed to be effectively circular. If it is, trying to
call it will give a runtime error.

Agnostic An instance of an attribute declared as Agnostic is
allowed to be effectively circular, as long as there is at least one
attribute declared as Circular on each cycle it is part of. An
Agnostic attribute does not have any explicit bottom value. In-
stead, if the attribute is part of a fixed-point computation, its first
approximation will be computed based on the approximations of
its downstream attributes3. If it is on a cycle without any Circu-
lar attribute, attempting to evaluate it will result in a runtime
error.
A Circular attribute instance and its downstream attributes,

up to any NonCircular attribute, are said to belong to the same
fixed-point component. This way, NonCircular attributes separate
different fixed-point components into an acyclic component graph.
If evaluation starts in one fixed-point component, and flows through
a NonCircular attribute into another fixed-point component, the
first component will be stacked during the evaluation of the sec-
ond component. Strongly connected components that are directly
connected with an edge, or separated only by Agnostic attributes,
will be evaluated as part of the same fixed-point component.

2.2 Evaluation Algorithms

We consider three different main algorithms for evaluation: Ba-
sicStacked, RelaxedMonolithic, and RelaxedStacked. Basic-
Stacked corresponds to the original algorithm by Magnusson [16]
and supports Circular and NonCircular attributes.

A consequence of BasicStacked is that all attributes that may
have an effectively circular instance, for some AST, must be de-
clared as Circular. This can be impractical for larger systems, like
compilers and program analyzers for real languages. For example,
it may be the case that a common attribute, say a type attribute,
can have instances that are on cycles only for particular language
constructs, e.g., local type inference in lambda expressions. Requir-
ing an attribute to be declared as Circular would then give an
efficiency penalty when analyzing all other parts of the program
where instances of the attribute are actually not on a cycle. To avoid

3If there is a path from an attribute instance 𝑎 to an attribute instance 𝑏, we say that
𝑏 is downstream from 𝑎.

RAGs
Specification

Evaluation
Code

JastAdd
Compiler

CAT

Callgraph
Analysis Tool

Optimised
Evaluation

Code

input

Meta
Data

JastAdd
Compiler

+
Optimisation

flags

generates input generates

input

generatesinput

Figure 1: Approach overview: detection of non-circular attributes.

this problem, Öqvist introduced an alternative algorithm that we
call RelaxedMonolithic [17], which supports Circular and Ag-
nostic attributes. Agnostic attributes can be on a cycle, but if they
are not, their evaluation can be more efficient than for Circular
attributes.

When using RelaxedMonolithic, all attributes that are not
explicitly declared as Circular are assumed to be Agnostic, so
there are no NonCircular attributes that can separate strongly
connected components. Therefore, when a Circular attribute is
evaluated, all its downstream attributes, both Circular and Ag-
nostic, will be evaluated as part of the same monolithic fixed-point
component. As our evaluation will show, this can be very inef-
ficient for demand analyses that start with querying a Circular
attribute. To get the best of both BasicStacked and RelaxedMono-
lithic, we therefore propose a new algorithm, RelaxedStacked
that supports all three kinds of attributes. In this algorithm, Non-
Circular attributes can be used to separate the evaluation into
smaller fixed-point components. By using a static conservative anal-
ysis of the attribute specification, we can identify attributes that are
guaranteed to never be on any cycle in any possible AST, and that
can therefore safely be classified as NonCircular. For the sake of
brevity, we will not describe the algorithms in detail here, but refer
the reader to the original papers [16, 17].

3 STATIC ANALYSIS TO IDENTIFY

NONCIRCULAR ATTRIBUTES

For an attribute that is not declared asCircular, we have the option
of either declaring it as Agnostic or as NonCircular. Using an
Agnostic attribute has the advantage that it is safe to use, even
if it is on a cycle (as long as there is some Circular attribute
on the cycle). However, Agnostic attributes can in some cases
be quite inefficient. These inefficiencies can be avoided by using
NonCircular attributes instead of Agnostic ones. However, we
only want to use NonCircular attributes if we are sure that they
will never be on any cycle, for any possible AST.

To solve this problem, we have implemented a tool, CAT4, that
we use to analyze the static call graph of a RAG.We use this analysis
to identify attributes that can safely be declared as NonCircular.

CAT is a general call graph analysis tool for Java, and we use
it to analyze the Java code that is generated from a JastAdd RAG
specification. An overview of our approach is shown in Figure 1.
Initially, the RAG specification is fed into the JastAdd metacom-
piler, which generates the corresponding evaluation code in Java.
Then, CAT analyses the generated evaluation code and computes
the corresponding call graph. In this call graph, method declarations
4https://github.com/IdrissRio/cat

https://github.com/IdrissRio/cat

Using Static Analysis to Improve the Efficiency of Program Analysis

are nodes, and edges represent method calls. The CAT tool will use
this call graph to identify what attributes can safely be declared as
NonCircular, and output this information as a meta data file. Then
JastAdd is run again, this time with the meta data as additional
input and with some optimization flags enabled. JastAdd uses this
information to generate optimized evaluation code where as many
as possible of the unannotated attributes use the NonCircular
evaluation algorithm instead of the Agnostic one.

3.1 Identifying Non-Circular Attributes

Since we are interested in how attributes call each other, we start
by constructing a filtered call graph using CAT, including only the
methods that correspond to attributes. Paths over other methods
in the original call graph are projected to edges in the filtered
graph. To identify which methods correspond to attributes, we use
annotations generated by the JastAdd metacompiler.

To identify non-circular attributes, we employ Tarjan’s algorithm
on the filtered call graph to discover all strongly connected compo-
nents (SCCs). A SCC constitutes a set of nodes in a directed graph
where each node is reachable from every other node in the set.

Once the SCCs are computed, we can safely mark an attribute 𝑛
as NonCircular if both of the following conditions hold:

(1) 𝑛 is in a SCC with only a single node, and
(2) 𝑛 does not directly call itself (no self-loop).

4 EVALUATION

In this section, we present the evaluation performance of the three
algorithms: BasicStacked, RelaxedMonolithic, and Relaxed-
Stacked. The evaluation includes two distinct case studies: the
construction of an LL(1) parser, and IntraJ, an extension of the
ExtendJ [8] Java compiler frontend for data-flow analysis. For
the latter, we do benchmarks both on a forward and a backward
analysis. BasicStacked is only evaluated in the first case study as it
requires all attributes on a cycle to be declared as circular, which is
not practical for complex applications like IntraJ. When Relaxed-
Stacked is evaluated, we use the CAT tool to automatically infer
what attributes can be declared as NonCircular.

The first case study is included to demonstrate that the Relaxed-
Stacked algorithm does not introduce any performance degra-
dation for applications that were the driving forces behind the
development of the BasicStacked and RelaxedMonolithic al-
gorithms. The second case study is included to demonstrate the
advantages of the RelaxedStacked algorithm for more complex
applications and for analyses in on-demand settings.

4.1 Evaluation Setup

System Configuration. Our experiments were conducted on a ma-
chine with Intel Core i7-11700K CPU running at 3.60GHz and
equipped with 128 GB RAM.

Evaluation Methodology. The measurements were conducted sep-
arately for start-up performance on a cold Java Virtual Machine
(JVM), involving a JVM restart for each run, and for steady-state
performance, with a single measurement taken after 49 warmup
runs. Each benchmark iteration was repeated 25 times, resulting in
a total of 1250 runs for steady-state measurements. For steady-state,

Benchmark LOC #Methods Version

commons-cli 6235 585 1.5
commons-jxpath 24320 2030 1.3
pmd 60749 5325 4.2.5
struts 81394 7023 2.3.22
jfreechart 95664 6980 1.0.0
extendj 147265 16025 11.0
weka 245719 14952 revision 7806

Table 1: Evaluated Java benchmarks, including number of lines of

code, number of methods, and version.

#T #P BasicStacked RelaxedMonolithic RelaxedStacked
155 332 2.92±0.05 8.30±0.12 2.93±0.03
Table 2: Startup performance results for the Java 1.2 grammar bench-

mark. Includes the number of terminals (#T) and productions (#P).

The measurements are reported in milliseconds.

follow firstSuffix first nullable

nullableSuffix

Figure 2: Simplified static call graph of the attributes defining the

nullable, first, and follow sets.

we introduced a 300 seconds timeout since RelaxedMonolithic
took a long time to run for some benchmarks. The reported metrics
include the median values and 95% confidence intervals.

Benchmarks. The Java benchmark projects used for the IntraJ case
study are shown in Table 1. These benchmarks include various
projects such as pmd and jfreechart, including the generated Java
source code of ExtendJ itself.

4.2 Case Study: LL(1) Parser Construction

LL(1) parsers can be generated by computing the nullable, first, and
follow sets for a context-free grammar [1]. Normally, these sets are
computed by hand-written fixed-point algorithms. Magnusson et.
al. [16] instead formulated the computation as circular attributes.
We use the RAG specification from their artifact to evaluate our
different algorithms.

Table 2 shows the startup performance results for computing
nullable, first, and follow sets for a Java 1.2 grammar. From this table
we can observe that the RelaxedStacked algorithm performs as
well as BasicStacked, and is significantly faster than Relaxed-
Monolithic, with a speedup of 8.30

2.93 =∼2.8x. One reason for this
is that RelaxedStacked is able to compute follow in a separate
fixed-point component than first and nullable.

Figure 2 shows the static call graph between a subset of the
attributes involved. The attributes follow, first, nullable are
declared as Circular. Our tool CAT infers that five attributes can
be declared as NonCircular. Among these, we can find the at-
tributes firstSuffix and nullableSuffix, which will break the
circular evaluation when RelaxedStacked is used and when the
attribute follow is called. Furthermore, CAT identifies that the at-
tributes nullable and first for Terminal, despite being explicitly
declared as Circular, are effectively NonCircular which allows
the RelaxedStacked algorithm to avoid reevaluating them in each
fixed-point iteration.

Riouak I.

4.3 Case Study: IntraJ

IntraJ [18] is a dataflow analyser for Java built as an extension of
ExtendJ. It currently supports detecting two kinds of dataflow bugs:
null-pointer dereferences and and dead assignments. The dataflow
information is propagated through the program using the control-
flow graph (CFG), available with the functions 𝑝𝑟𝑒𝑑 (predecessors)
and 𝑠𝑢𝑐𝑐 (successors).

in(𝑛) =
⊔

𝑝∈pred(𝑛)
out(𝑝) (1)

out(𝑛) = 𝑓tr (in(𝑛), 𝑛) (2)

out(𝑛) =
⊔

𝑝∈succ(𝑛)
in(𝑝) (3)

in(𝑛) = 𝑓tr (out(𝑛), 𝑛) (4)
The equations (1) and (2) are used to propagate information

from the predecessors of a node 𝑛 to 𝑛 itself. On the other hand, the
equations (3) and (4) are used to propagate information backward
in the CFG. In IntraJ, 𝑖𝑛, 𝑜𝑢𝑡 , 𝑠𝑢𝑐𝑐 , and 𝑝𝑟𝑒𝑑 are represented by
attributes. Our tool CAT will detect that both pred and succ can
never be on a cycle and can thus be declared as NonCircular.

Performance

For IntraJ we conducted the evaluation on two dataflow analyses,
namely the null-pointer dereference and the dead assignment analy-
ses. Each analysis is done by querying an attribute in IntraJ that
collects all problems (dead assignments or potential null-pointer
dereferences) in the benchmark program. This attribute will in
turn demand the dataflow in/out attributes, which in turn demand
the pred/succ attributes. These attributes may in turn demand
name- and type analysis attributes as defined by the underlying
compiler ExtendJ. Thus, in these analyses, many attributes will be
demanded downstream from the circular dataflow attributes. It is
therefore expected that RelaxedStacked will perform better than
RelaxedMonolithic.

Table 3 shows the performance of the RelaxedMonolithic and
RelaxedStacked algorithms for both the dead assignment and the
null-pointer dereference analyses. The start up measurements in-
clude both parsing and analysis and the steady state measurements
include only analysis.

For dead assignment analysis the results show significant perfor-
mance improvements for the RelaxedStacked algorithm compared
to the RelaxedMonolithic algorithm. For startup, the speedup
of RelaxedStacked is between ∼1.3x to ∼2.5x, and with a median
of ∼1.7x. For steady-state, the speedup is even more significant:
between ∼1.9x to ∼2.8x, with a median of ∼2.5x. One reason for
the speedup is that RelaxedMonolithic will compute the control-
flow graph (succ and its downstream attributes) in each fixed-point
iteration, whereas for RelaxedStacked succ will be classified as
NonCircular, and will only be computed once.

For null-pointer dereference the results show an evenmore signif-
icant improvement for RelaxedStacked, with a speedup between
∼4x to ∼115x for startup performance, with a median of ∼11.5x.
For steady state performance, the speedup was between ∼11x to
∼35x, with a median of ∼18.5x, disregarding 2 measurements that
timed out for RelaxedMonolithic. The reason for the larger differ-
ence and variation is that this is a forward analysis which uses the
pred() attribute which is defined as the reverse of the successor,
leading to even more downstream attributes being unnecessarily
reevaluated for the RelaxedMonolithic algorithm.

25 50 75 100 125 150 175 200
Methods

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ex
ec

ut
io

n
Ti

m
e

(s
)

x5.2x4.5 x5.1 x9.3
x11.6

PMD

0

50000

100000

150000

200000

Su
cc

es
so

r E
va

lu
at

io
n

Co
un

t

RelaxedMonolithic execution time
RelaxedStacked execution time
RelaxedMonolithic Successor Evaluation Count
RelaxedStacked Successor Evaluation Count

Figure 3: Steady-state performance of null-pointer dereference anal-

ysis for randomly selected sets of methods of the pmd benchmark.

Solid lines represent execution time (left axis, seconds). Dashed lines

represent successor attribute evaluations (right axis, count).

The experiments in Table 3 analyze complete benchmark pro-
grams. To further demonstrate the on-demand nature of the algo-
rithms, we ran the analyses on sets of randomly selected methods,
querying an attribute summarizing the results for each of the se-
lected methods. For each benchmark, we randomly selected 10, 20,
50, 100, and 200 methods to run the experiment, and report the
steady-state performance of the analyses. We present the results
exclusively for pmd as findings across other projects are similar.
Figure 3 shows the results for the null-pointer dereference analy-
sis. We report both the execution time and the number of times
a succ attribute was evaluated, and it can be observed that these
metrics correlate closely. We can also note that the speedups for
RelaxedStacked are consistent with the earlier results in Table 3
running on the whole benchmark, approaching similar numbers as
the number of methods increases. This experiment demonstrates
the on-demand nature of the algorithms, resulting in very short
response times when only a subset of the results are demanded, and
with similar performance profiles as for the complete programs.

5 RELATEDWORK

Related work includes other work on circular attribute grammars,
other work on declarative programming of fixed-point problems,
like Datalog, and other approaches to demand-evaluation for pro-
gram analysis problems.

Attribute grammars, as originally described by Knuth [15] were
not allowed to have cyclic dependencies. Farrow [9] and Jones
et al. [14] independently of each other introduced the notion of
circular but well-defined attribute grammars. Farrow presented an
algorithm based on a static analysis of the attribute grammar. Jones’
algorithm uses a dynamic dependency graph to identify strongly
connected components, and supports incremental evaluation. In
contrast to ourwork, neither of these approaches supports reference
attributes or demand evaluation.

Boyland implemented demand-driven evaluation for circular
attributes in the presence of so called remote attributes (similar
to reference attributes), but provided no explicit evaluation algo-
rithm [3]. Hesamian recently implemented statically scheduled
support for circular attributes in Boyland’s remote attribute sys-
tem APS [12]. However, this implementation is exhaustive and not
demand-driven.

Another declarative approach to program analysis is to use the
Datalog language. In this approach, initial facts are generated from

Using Static Analysis to Improve the Efficiency of Program Analysis

Benchmark
Dead Assignment Analysis Null Pointer Dereference Analysis

Start up Steady State Start up Steady State
Relaxed- Relaxed- Relaxed- Relaxed- Relaxed- Relaxed- Relaxed- Relaxed-

Monolithic Stacked Monolithic Stacked Monolithic Stacked Monolithic Stacked
commons-cli 0.74±0.02 0.56±0.01× 1.31 ↑ 0.09±0.00 0.05±0.00× 1.89 ↑ 4.77±0.04 1.08±0.02× 4.44 ↑ 3.13±0.03 0.19±0.01× 16.10 ↑
commons-jxpath 2.18±0.05 1.41±0.03× 1.55 ↑ 0.70±0.00 0.29±0.00× 2.46 ↑ 7.29±0.07 1.77±0.04× 4.12 ↑ 4.76±0.06 0.41±0.00× 11.50 ↑
pmd 6.49±0.12 3.48±0.05× 1.86 ↑ 3.61±0.02 1.39±0.02× 2.60 ↑ 32.36±0.20 4.46±0.09× 7.26 ↑ 28.14±0.10 1.73±0.01× 16.24 ↑
struts 9.32±0.18 5.31±0.09× 1.75 ↑ 5.18±0.07 2.17±0.06× 2.38 ↑ 66.97±0.85 6.42±0.10× 10.43 ↑ 61.74±0.74 3.54±0.14× 17.45 ↑
jfreechart 14.13±0.13 9.33±0.52× 1.51 ↑ 11.28±0.20 4.16±0.30× 2.71 ↑ 202.15±1.62 8.16±0.07× 24.78 ↑ 205.43±2.08 5.88±0.69× 34.91 ↑
extendj 40.88±0.7416.11±0.21× 2.54 ↑ 37.16±0.6612.94±0.35× 2.87 ↑ 1510.75±5.9913.04±0.08× 115.87 ↑ ≥ 300.00 9.55±0.08≥ 31.42 ↑
weka 28.12±0.0912.93±0.12× 2.17 ↑ 23.50±0.20 9.31±0.19× 2.52 ↑ 475.89±2.6617.21±0.45× 27.65 ↑ ≥ 300.00 11.88±0.32≥ 25.25 ↑
Table 3: Performance of dead assignment analysis and null pointer dereference analysis benchmarks, comparing the RelaxedMonolithic and

RelaxedStacked algorithms in startup and steady state. The symbol indicates that the analysis timed out.

the complete project code, and derived facts are computed using
logic rules. This line of work includes commercial tools like the
.QL system [6] system (now CodeQL). There are high performance
toolboxes implemented using this approach, like the Doop frame-
work [4] that supports points-to analysis of Java bytecode. However,
most Datalog frameworks, including Doop, use data-driven rather
than demand-driven evaluation, computing all derivable facts rather
than only those needed for a particular query. Datalog programs
can be rewritten to enforce on-demand evaluation [2], and some
Datalog-based tools like Clog [7] make extensive use of such ap-
proaches to reduce the overhead of operations that are known to
be slow. However, this optimization requires separate rulesets for
each type of query. A general approach to demand-driven abstract
interpretation was presented by Stein et al [19]. It supports cyclic
computations over infinite-height domains, but requires an a priori
computed control-flow graph, and was only evaluated on synthetic
workloads.

6 CONCLUSION

In this paper, we have presented a new formulation of demand-
driven evaluation of Reference Attribute Grammars with circular
(fixed-point evaluated) attributes. Our formulation allows the coex-
istence of three important kinds of attributes: Circular, Agnostic,
and NonCircular, resulting in the new RelaxedStacked algo-
rithm. Previous work supported combining Circular with only
NonCircular or Agnostic, but not both.

From our experiments, it is clear that using NonCircular at-
tributes is key for efficient evaluation. However, manually specify-
ing NonCircular instead of Agnostic can be error-prone, leading
to runtime errors. Our approach uses call graph analysis on the
RAG to automatically identify NonCircular attributes, ensuring
both safety and efficiency.

We have done experiments to evaluate the effect of the new
algorithm on LL(1) parser construction, and on two intraprocedural
dataflow analyses for Java. In the parser construction case study,
which has several nested circular attributes, RelaxedStacked per-
formed as well as BasicStacked, and 2.8x better than Relaxed-
Monolithic. For the IntraJ case study, we compared onlyRelaxed-
Stacked and RelaxedMonolithic, as it requires Agnostic at-
tributes, and can therefore not be run with BasicStacked. For
dataflow analyses applications we saw substantial speedups for
RelaxedStacked over RelaxedMonolithic. For dead assignment
analysis, we observed a median speedup of 1.7x in startup per-
formance, and a median of 2.5x for steady-state. For null-pointer

dereference analysis, we observed an even more significant im-
provement with a median of 11.5x for startup performance and a
median of 18.5x for steady state.

REFERENCES

[1] A. W. Appel. Modern compiler implementation in C. Cambridge university, 2004.
[2] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange

ways to implement logic programs. In Proceedings of the fifth ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages 1–15, 1985.

[3] J. T. Boyland. Descriptional Composition of Compiler Components. PhD thesis,
University of California, Berkeley, 1996.

[4] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophis-
ticated points-to analyses. In Proceedings of OOPSLA ’09, pages 243–262, New
York, NY, USA, 2009. ACM.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL’97 Los Angeles, California, USA, January 1977, pages 238–252. ACM, 1977.

[6] O. De Moor, D. Sereni, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman, N. Ongk-
ingco, and J. Tibble. .QL: Object-oriented queries made easy. In International
Summer School on Generative and Transformational Techniques in Software Engi-
neering, pages 78–133. Springer, 2007.

[7] A. Dura and C. Reichenbach. Clog: A declarative language for c static code
checkers. In Proceedings of the 33rd ACM SIGPLAN International Conference on
Compiler Construction, CC 2024, page 186–197, 2024.

[8] T. Ekman and G. Hedin. The jastadd extensible java compiler. In R. P. Gabriel,
D. F. Bacon, C. V. Lopes, and G. L. S. Jr., editors, Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada,
pages 1–18. ACM, 2007.

[9] R. Farrow. Automatic generation of fixed-point-finding evaluators for circular,
but well-defined, attribute grammars. In Proceedings of the 1986 Symposium on
Compiler Construction, pages 85–98. ACM, 1986.

[10] G. Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3), 2000.
[11] G. Hedin and E. Magnusson. Jastadd—an aspect-oriented compiler construction

system. Science of Computer Programming, 47(1):37–58, 2003.
[12] S. Hesamian. Statically Scheduling Circular Remote Attribute Grammars. PhD

thesis, University of Wisconsin-Milwaukee, 2023. Theses and Dissertations. 3383.
[13] S. Horwitz, A. J. Demers, and T. Teitelbaum. An efficient general iterative

algorithm for dataflow analysis. Acta Informatica, 24(6):679–694, 1987.
[14] L. G. Jones and J. Simon. Hierarchical VLSI design systems based on attribute

grammars. In POPL St. Petersburg Beach, Florida, USA, January 1986, pages 58–69,
1986.

[15] D. E. Knuth. Semantics of context-free languages. Mathematical systems theory,
2(2):127–145, 1968.

[16] E. Magnusson and G. Hedin. Circular reference attributed grammars — their
evaluation and applications. Science of Computer Programming, 68(1):21–37, 2007.
Special Issue on the ETAPS 2003 Workshop on Language Descriptions, Tools
and Applications (LDTA ’03).

[17] J. Öqvist and G. Hedin. Concurrent circular reference attribute grammars. In
B. Combemale, M. Mernik, and B. Rumpe, editors, Proceedings of the 10th ICSE,
SLE 2017, Vancouver. ACM, 2017.

[18] I. Riouak, C. Reichenbach, G. Hedin, and N. Fors. A precise framework for
source-level control-flow analysis. In SCAM 2021, pages 1–11. IEEE, 2021.

[19] B. Stein, B. E. Chang, and M. Sridharan. Demanded abstract interpretation. In
S. N. Freund and E. Yahav, editors, PLDI ’21, Virtual Event, Canada, June 20-25,
2021, pages 282–295. ACM, 2021.

	Abstract
	1 Introduction
	2 Circular Attribute Algorithms
	2.1 Preliminaries
	2.2 Evaluation Algorithms

	3 Static Analysis to Identify NonCircular attributes
	3.1 Identifying Non-Circular Attributes

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Case Study: LL(1) Parser Construction
	4.3 Case Study: IntraJ

	5 Related Work
	6 Conclusion
	References

