
Lund University
Computer Science Department

A Precise Framework for Source-Level
Control-Flow Analysis

21st IEEE International Working Conference on Source Code Analysis and
Manipulation

Idriss Riouak, Christoph Reichenbach, Görel Hedin and
Niklas Fors

September 28, 2021



1

Introduction and Motivations

Introduction

Data-flow analysis plays an important role in software
development, and helps developers to detect subtle bugs

Source-level dataflow analysis ... why ?

▶ Easier integration with IDE
▶ Reports are directly linked to the source code

The main challenges were:

▶ Large engineering effort for each source language
▶ The syntax doesn’t always reflect the program’s semantics

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



1

Introduction and Motivations

Introduction

Data-flow analysis plays an important role in software
development, and helps developers to detect subtle bugs

Source-level dataflow analysis ... why ?

▶ Easier integration with IDE
▶ Reports are directly linked to the source code

The main challenges were:

▶ Large engineering effort for each source language
▶ The syntax doesn’t always reflect the program’s semantics

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



1

Introduction and Motivations

Introduction

Data-flow analysis plays an important role in software
development, and helps developers to detect subtle bugs

Source-level dataflow analysis ... why ?

▶ Easier integration with IDE
▶ Reports are directly linked to the source code

The main challenges were:

▶ Large engineering effort for each source language
▶ The syntax doesn’t always reflect the program’s semantics

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



2

Introduction and Motivations

Our approach

We build the CFGs as extension of the AST using Reference
Attribute Grammars (RAGs)
▶ Declarative specification
▶ Handle implicit control flow
▶ Overcome the limitations of an earlier framework

Research questions

▶ How can we reduce the engineering effort ?
▶ How can we fill the gap between syntax and semantics ?
▶ Is our new approach competitive performance-wise?

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



3

Introduction and Motivations

Intraprocedural RAG-based CFGs

We removed the limitations of the previous approach
LegendCode

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



3

Introduction and Motivations

Intraprocedural RAG-based CFGs

We removed the limitations of the previous approach
LegendCode

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



4

Introduction and Motivations

Modular architecture

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



4

Introduction and Motivations

Modular architecture

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



4

Introduction and Motivations

Modular architecture

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



4

Introduction and Motivations

Modular architecture

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



5

The IntraCFG Framework

Framework overview

▶ CFGRoot extends the AST with two
HOAs: Entry and Exit

▶ CFGSupport defines:

▶ firstNodes
▶ nextNodes

▶ All the CFGNode are CFGSupport

▶ Used firstNodes and nextNodes to
compute the succ attribute

▶ The pred is computed as the inverse
of succ

foo(int p1, int p2, Boolean b1){
if(p1==p2 && b1)

p1 = 0;
}

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



5

The IntraCFG Framework

Framework overview
▶ CFGRoot extends the AST with two

HOAs: Entry and Exit

▶ CFGSupport defines:

▶ firstNodes
▶ nextNodes

▶ All the CFGNode are CFGSupport

▶ Used firstNodes and nextNodes to
compute the succ attribute

▶ The pred is computed as the inverse
of succ

foo(int p1, int p2, Boolean b1){
if(p1==p2 && b1)

p1 = 0;
}

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



5

The IntraCFG Framework

Framework overview
▶ CFGRoot extends the AST with two

HOAs: Entry and Exit

▶ CFGSupport defines:

▶ firstNodes
▶ nextNodes

▶ All the CFGNode are CFGSupport

▶ Used firstNodes and nextNodes to
compute the succ attribute

▶ The pred is computed as the inverse
of succ

foo(int p1, int p2, Boolean b1){
if(p1==p2 && b1)

p1 = 0;
}

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



5

The IntraCFG Framework

Framework overview
▶ CFGRoot extends the AST with two

HOAs: Entry and Exit

▶ CFGSupport defines:
▶ firstNodes

▶ nextNodes

▶ All the CFGNode are CFGSupport

▶ Used firstNodes and nextNodes to
compute the succ attribute

▶ The pred is computed as the inverse
of succ

foo(int p1, int p2, Boolean b1){
if(p1==p2 && b1)

p1 = 0;
}

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



5

The IntraCFG Framework

Framework overview
▶ CFGRoot extends the AST with two

HOAs: Entry and Exit

▶ CFGSupport defines:
▶ firstNodes
▶ nextNodes

▶ All the CFGNode are CFGSupport

▶ Used firstNodes and nextNodes to
compute the succ attribute

▶ The pred is computed as the inverse
of succ

foo(int p1, int p2, Boolean b1){
if(p1==p2 && b1)

p1 = 0;
}

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



5

The IntraCFG Framework

Framework overview
▶ CFGRoot extends the AST with two

HOAs: Entry and Exit

▶ CFGSupport defines:
▶ firstNodes
▶ nextNodes

▶ All the CFGNode are CFGSupport

▶ Used firstNodes and nextNodes to
compute the succ attribute

▶ The pred is computed as the inverse
of succ

foo(int p1, int p2, Boolean b1){
if(p1==p2 && b1)

p1 = 0;
}

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



5

The IntraCFG Framework

Framework overview
▶ CFGRoot extends the AST with two

HOAs: Entry and Exit

▶ CFGSupport defines:
▶ firstNodes
▶ nextNodes

▶ All the CFGNode are CFGSupport

▶ Used firstNodes and nextNodes to
compute the succ attribute

▶ The pred is computed as the inverse
of succ

foo(int p1, int p2, Boolean b1){
if(p1==p2 && b1)

p1 = 0;
}

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



5

The IntraCFG Framework

Framework overview
▶ CFGRoot extends the AST with two

HOAs: Entry and Exit

▶ CFGSupport defines:
▶ firstNodes
▶ nextNodes

▶ All the CFGNode are CFGSupport

▶ Used firstNodes and nextNodes to
compute the succ attribute

▶ The pred is computed as the inverse
of succ

foo(int p1, int p2, Boolean b1){
if(p1==p2 && b1)

p1 = 0;
}

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



6

The IntraCFG Framework

Challenges

▶ We used HOAs to extend the AST with new subtrees

▶ Call to
close() for
resources in
Try With
Resources

▶ Static and
Instance
initializers

▶ Exception-
sensitivity by
reifying Finally
Blocks.

▶ Implicit
condition in
empty For
loops

True

F
a
l
s
e

▶ We used Circular attribute to compute mutually depended
attributes

▶ The attribute may depends on its own value
▶ Computes a fixpoint

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



6

The IntraCFG Framework

Challenges

▶ We used HOAs to extend the AST with new subtrees
▶ Call to

close() for
resources in
Try With
Resources

▶ Static and
Instance
initializers

▶ Exception-
sensitivity by
reifying Finally
Blocks.

▶ Implicit
condition in
empty For
loops

True

F
a
l
s
e

▶ We used Circular attribute to compute mutually depended
attributes

▶ The attribute may depends on its own value
▶ Computes a fixpoint

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



6

The IntraCFG Framework

Challenges

▶ We used HOAs to extend the AST with new subtrees
▶ Call to

close() for
resources in
Try With
Resources

▶ Static and
Instance
initializers

▶ Exception-
sensitivity by
reifying Finally
Blocks.

▶ Implicit
condition in
empty For
loops

True

F
a
l
s
e

▶ We used Circular attribute to compute mutually depended
attributes

▶ The attribute may depends on its own value
▶ Computes a fixpoint

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



6

The IntraCFG Framework

Challenges

▶ We used HOAs to extend the AST with new subtrees
▶ Call to

close() for
resources in
Try With
Resources

▶ Static and
Instance
initializers

▶ Exception-
sensitivity by
reifying Finally
Blocks.

▶ Implicit
condition in
empty For
loops

True

F
a
l
s
e

▶ We used Circular attribute to compute mutually depended
attributes

▶ The attribute may depends on its own value
▶ Computes a fixpoint

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



6

The IntraCFG Framework

Challenges

▶ We used HOAs to extend the AST with new subtrees
▶ Call to

close() for
resources in
Try With
Resources

▶ Static and
Instance
initializers

▶ Exception-
sensitivity by
reifying Finally
Blocks.

▶ Implicit
condition in
empty For
loops

True

F
a
l
s
e

▶ We used Circular attribute to compute mutually depended
attributes

▶ The attribute may depends on its own value
▶ Computes a fixpoint

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



6

The IntraCFG Framework

Challenges

▶ We used HOAs to extend the AST with new subtrees
▶ Call to

close() for
resources in
Try With
Resources

▶ Static and
Instance
initializers

▶ Exception-
sensitivity by
reifying Finally
Blocks.

▶ Implicit
condition in
empty For
loops

True

F
a
l
s
e

▶ We used Circular attribute to compute mutually depended
attributes

▶ The attribute may depends on its own value
▶ Computes a fixpoint

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



6

The IntraCFG Framework

Challenges

▶ We used HOAs to extend the AST with new subtrees
▶ Call to

close() for
resources in
Try With
Resources

▶ Static and
Instance
initializers

▶ Exception-
sensitivity by
reifying Finally
Blocks.

▶ Implicit
condition in
empty For
loops

True

F
a
l
s
e

▶ We used Circular attribute to compute mutually depended
attributes
▶ The attribute may depends on its own value

▶ Computes a fixpoint

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



6

The IntraCFG Framework

Challenges

▶ We used HOAs to extend the AST with new subtrees
▶ Call to

close() for
resources in
Try With
Resources

▶ Static and
Instance
initializers

▶ Exception-
sensitivity by
reifying Finally
Blocks.

▶ Implicit
condition in
empty For
loops

True

F
a
l
s
e

▶ We used Circular attribute to compute mutually depended
attributes
▶ The attribute may depends on its own value
▶ Computes a fixpoint

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



7

Evaluation

Client analyses

We validate IntraJ by implementing three different dataflow
analyses:
▶ NullPointerAnalysis - NPA MAY - FORWARD
▶ LiveVariableAnalysis - LVA MAY - BACKWARD
▶ DeadAssignmentAnalysis - DAA uses LVA

nully

nonnull

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



7

Evaluation

Client analyses

We validate IntraJ by implementing three different dataflow
analyses:
▶ NullPointerAnalysis - NPA MAY - FORWARD
▶ LiveVariableAnalysis - LVA MAY - BACKWARD
▶ DeadAssignmentAnalysis - DAA uses LVA

nully

nonnull

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



7

Evaluation

Client analyses

We validate IntraJ by implementing three different dataflow
analyses:
▶ NullPointerAnalysis - NPA MAY - FORWARD
▶ LiveVariableAnalysis - LVA MAY - BACKWARD
▶ DeadAssignmentAnalysis - DAA uses LVA

nully

nonnull

• Default behaviour for CFGNodes

trFun(Γ){
return Γ;

}

• Specialised behaviour for AssignExpr

trFun(Γ){
if(rhs.mayBeNull())
Γ.put(lhs.decl(),nully);

else
Γ.put(lhs.decl(),nonnull);

return Γ;
}

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



8

Evaluation

Overview

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



8

Evaluation

Overview

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



8

Evaluation

Overview

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



9

Evaluation

Benchmark Projects

IntraJ reduces the CFGs size by 30% - 40%

Benchmark Qty IntraJ JJI %

Antlr Nodes 76·925 116·523 -39.9
Edges 85·028 136·528 -37.7

Pmd Nodes 103·739 182·864 -43.2
Edges 108·639 202·842 -46.4

Jfc Nodes 219·419 331·368 -33.7
Edges 220·256 363·642 -39.4

Fop Nodes 239·096 347·125 -31.1
Edges 240·068 379·269 -36.6

By removing all the redundant nodes

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



10

Evaluation

IntraJ vs SonarQube

We evaluated IntraJ against SonarQube

DAA

Benchmark Baseline (s) DAA (s) NPA (s)
IntraJ SQ IntraJ SQ IntraJ SQ

ANTLR 2.14 4.91 0.53 0.24 0.90 12.35
PMD 3.56 10.76 0.47 0.18 0.80 12.40
JFC 4.29 10.81 0.75 0.24 1.62 10.71
FOP 4.42 17.20 0.67 0.34 1.42 19.25

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



10

Evaluation

IntraJ vs SonarQube

We evaluated IntraJ against SonarQube

DAA

Benchmark Baseline (s) DAA (s) NPA (s)
IntraJ SQ IntraJ SQ IntraJ SQ

ANTLR 2.14 4.91 0.53 0.24 0.90 12.35
PMD 3.56 10.76 0.47 0.18 0.80 12.40
JFC 4.29 10.81 0.75 0.24 1.62 10.71
FOP 4.42 17.20 0.67 0.34 1.42 19.25

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



10

Evaluation

IntraJ vs SonarQube

We evaluated IntraJ against SonarQube

DAA

Benchmark Baseline (s) DAA (s) NPA (s)
IntraJ SQ IntraJ SQ IntraJ SQ

ANTLR 2.14 4.91 0.53 0.24 0.90 12.35
PMD 3.56 10.76 0.47 0.18 0.80 12.40
JFC 4.29 10.81 0.75 0.24 1.62 10.71
FOP 4.42 17.20 0.67 0.34 1.42 19.25

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



10

Evaluation

IntraJ vs SonarQube

We evaluated IntraJ against SonarQube

DAA

NPA

Benchmark Baseline (s) DAA (s) NPA (s)
IntraJ SQ IntraJ SQ IntraJ SQ

ANTLR 2.14 4.91 0.53 0.24 0.90 12.35
PMD 3.56 10.76 0.47 0.18 0.80 12.40
JFC 4.29 10.81 0.75 0.24 1.62 10.71
FOP 4.42 17.20 0.67 0.34 1.42 19.25

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



10

Evaluation

IntraJ vs SonarQube

We evaluated IntraJ against SonarQube

DAA

NPA

Benchmark Baseline (s) DAA (s) NPA (s)
IntraJ SQ IntraJ SQ IntraJ SQ

ANTLR 2.14 4.91 0.53 0.24 0.90 12.35
PMD 3.56 10.76 0.47 0.18 0.80 12.40
JFC 4.29 10.81 0.75 0.24 1.62 10.71
FOP 4.42 17.20 0.67 0.34 1.42 19.25

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



10

Evaluation

IntraJ vs SonarQube

We evaluated IntraJ against SonarQube

DAA

NPA

Benchmark Baseline (s) DAA (s) NPA (s)
IntraJ SQ IntraJ SQ IntraJ SQ

ANTLR 2.14 4.91 0.53 0.24 0.90 12.35
PMD 3.56 10.76 0.47 0.18 0.80 12.40
JFC 4.29 10.81 0.75 0.24 1.62 10.71
FOP 4.42 17.20 0.67 0.34 1.42 19.25

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



10

Evaluation

IntraJ vs SonarQube

We evaluated IntraJ against SonarQube

DAA

NPA

Benchmark Baseline (s) DAA (s) NPA (s)
IntraJ SQ IntraJ SQ IntraJ SQ

ANTLR 2.14 4.91 0.53 0.24 0.90 12.35
PMD 3.56 10.76 0.47 0.18 0.80 12.40
JFC 4.29 10.81 0.75 0.24 1.62 10.71
FOP 4.42 17.20 0.67 0.34 1.42 19.25

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



10

Evaluation

IntraJ vs SonarQube

We evaluated IntraJ against SonarQube

DAA

NPA

Benchmark Baseline (s) DAA (s) NPA (s)
IntraJ SQ IntraJ SQ IntraJ SQ

ANTLR 2.14 4.91 0.53 0.24 0.90 12.35
PMD 3.56 10.76 0.47 0.18 0.80 12.40
JFC 4.29 10.81 0.75 0.24 1.62 10.71
FOP 4.42 17.20 0.67 0.34 1.42 19.25

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



10

Evaluation

IntraJ vs SonarQube

We evaluated IntraJ against SonarQube

DAA

NPA

Benchmark Baseline (s) DAA (s) NPA (s)
IntraJ SQ IntraJ SQ IntraJ SQ

ANTLR 2.14 4.91 0.53 0.24 0.90 12.35
PMD 3.56 10.76 0.47 0.18 0.80 12.40
JFC 4.29 10.81 0.75 0.24 1.62 10.71
FOP 4.42 17.20 0.67 0.34 1.42 19.25

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



11

Conclusions

IntraCFG & IntraJ

We presented IntraCFG, a language independent RAGs
framework that overcomes the limitations of earlier approaches:
▶ High precision
▶ ≥30% fewer nodes
▶ Better performance for large code bases

Moreover, we presented:
▶ IntraJ,an instance of IntraCFG for Java 4-7
▶ Concise code for CFG and client analyses
▶ Competitive to SonarQube

Thank you for your attention!

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



11

Conclusions

IntraCFG & IntraJ

We presented IntraCFG, a language independent RAGs
framework that overcomes the limitations of earlier approaches:
▶ High precision
▶ ≥30% fewer nodes
▶ Better performance for large code bases

Moreover, we presented:
▶ IntraJ,an instance of IntraCFG for Java 4-7

▶ Concise code for CFG and client analyses
▶ Competitive to SonarQube

Thank you for your attention!

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



11

Conclusions

IntraCFG & IntraJ

We presented IntraCFG, a language independent RAGs
framework that overcomes the limitations of earlier approaches:
▶ High precision
▶ ≥30% fewer nodes
▶ Better performance for large code bases

Moreover, we presented:
▶ IntraJ,an instance of IntraCFG for Java 4-7
▶ Concise code for CFG and client analyses

▶ Competitive to SonarQube

Thank you for your attention!

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



11

Conclusions

IntraCFG & IntraJ

We presented IntraCFG, a language independent RAGs
framework that overcomes the limitations of earlier approaches:
▶ High precision
▶ ≥30% fewer nodes
▶ Better performance for large code bases

Moreover, we presented:
▶ IntraJ,an instance of IntraCFG for Java 4-7
▶ Concise code for CFG and client analyses
▶ Competitive to SonarQube

Thank you for your attention!

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021



11

Conclusions

IntraCFG & IntraJ

We presented IntraCFG, a language independent RAGs
framework that overcomes the limitations of earlier approaches:
▶ High precision
▶ ≥30% fewer nodes
▶ Better performance for large code bases

Moreover, we presented:
▶ IntraJ,an instance of IntraCFG for Java 4-7
▶ Concise code for CFG and client analyses
▶ Competitive to SonarQube

Thank you for your attention!

Idriss Riouak, Christoph Reichenbach, Görel Hedin and Niklas Fors | IEEE-SCAM2021


	Introduction and Motivations
	RAGs Notation
	The IntraCFG Framework
	IntraJ: IntraCFG implementation for Java 7
	Evaluation
	Conclusions

