
Noname manuscript No.
(will be inserted by the editor)

INTRAJ: AN ON-DEMAND FRAMEWORK FOR INTRAPROCEDURAL
JAVA CODE ANALYSIS

Idriss Riouak · Niklas Fors · Görel Hedin · Christoph Reichenbach

Received: date / Accepted: date

Abstract Static analysis tools play a crucial role in software
development by detecting bugs and vulnerabilities. How-
ever, running these tools separately from the code editing
process often causes developers to switch contexts, which
can reduce productivity. Previous work has shown how Ref-
erence Attribute Grammars (RAGs) can be used for declara-
tive implementation of competitive tooling for intraprocedu-
ral control-flow and dataflow analysis of Java source code,
embodied in the tool INTRAJ. In this paper, we demonstrate
how INTRAJ can be leveraged to provide interactive analy-
sis results directly in the editor, similar to compile-time er-
ror detection, relying on automatic on-demand evaluation of
RAGs. We discuss the architecture of INTRAJ, and demon-
strate how it can be integrated into the development process
in three different ways: in the command line, in an editor
integration based on the Language Server Protocol, and in
an integration with the debugging tool CODEPROBER. We
showcase the extensibility of INTRAJ by illustrating how
new client analyses and language constructs can be added
to the framework through RAG specifications. Finally, we
evaluate the interactive performance of INTRAJ on a set
of real-world Java benchmarks, demonstrating that INTRAJ
can provide interactive feedback to developers, achieving a
response time of under 0.1 seconds for most compilation
units.

Keywords Static Program Analysis, Reference Attribute
Grammars, Control Flow Analysis, Dataflow Analysis, Bug
Detection, Interactive Bug Detection

Idriss Riouak · Niklas Fors · Görel Hedin · Christoph Reichenbach
Computer Science Department, Lund University, Sweden
E-mail: {idriss.riouak, niklas.fors, gorel.hedin,
christoph.reichenbach}@cs.lth.se

1 Introduction

Detecting software bugs early in the development process is
crucial. Early detection not only significantly reduces costs
but can also prevent severe consequences, such as system
failures, security breaches, and financial losses [35].

As a result, software development is increasingly rely-
ing on static analysis tools to identify defects and vulnera-
bilities. Tools like Infer [9], PMD [8], and SpotBugs (suc-
cessor of FindBugs [3]), are becoming integral parts of the
development process, providing automated analysis of code
quality and security issues. These tools are typically run as
part of automated pipeline enabling the detection of post-
editing issues [34]. While this approach is effective, studies
have shown that developers strongly prefer to view analysis
results directly in the IDE, where issues can be addressed
seamlessly within their workflow [7].

Detecting and displaying static analysis issues directly in
the editor provides interactive feedback similar to compile-
time error detection, which enhances usability by reduc-
ing context switching and helping maintain the developer’s
focus and productivity. Ideally, response times should be
within 0.1 seconds, to ensure that a system feels instanta-
neous to the user [29]. While this level of interactivity can-
not always be achieved, the challenge of delivering consis-
tently low-latency, interactive static analysis remains largely
unaddressed.

In this paper we revisit our previous work on IN-
TRAJ [33], a precise and efficient framework for intraproce-
dural control-flow and dataflow analysis of Java source code.
Here, we demonstrate how INTRAJ can be leveraged to pro-
vide interactive analysis results directly in the editor, similar
to compile-time error detection. We describe the architec-
ture of INTRAJ and demonstrate its extensibility and effi-
ciency for interactive analyses, highlighting its modularity
and responsiveness. INTRAJ achieves low latency through

2 2 BACKGROUND

two key approaches: on-demand evaluation, computing only
the necessary parts of the analysis relevant to the current
editing context, and source-level analysis, performing anal-
ysis directly on the abstract syntax tree rather than byte-
code, avoiding the overhead of bytecode generation. This
approach minimizes computational resources and ensures
efficient and responsive analysis.

INTRAJ is built using Reference Attribute Grammars
(RAGs) [14], a high-level declarative formalism that inher-
ently supports on-demand evaluation. Our framework is im-
plemented as an extension of the EXTENDJ [11] Java com-
piler, which already uses RAGs for name binding and type
analysis. The INTRAJ API includes methods for traversing
the control-flow graph and computing dataflow analyses, en-
abling the development of custom analyses using RAGs.

INTRAJ offers an extensible API, allowing developers to
integrate additional analyses as RAG specifications. These
extensions can leverage both INTRAJ and EXTENDJ APIs,
benefiting from automatic on-demand evaluation.

We showcase INTRAJ across multiple development en-
vironments, including a command line tool, an editor in-
tegrated with the Language Server Protocol, and the de-
bugging tool CODEPROBER [1]. Our previous work [33]
showed that INTRAJ achieves precision comparable to
industrial-strength tools like SonarQube and has efficient
performance on whole program analyses. In this paper, we
evaluate the performance of INTRAJ in interactive environ-
ments. We present results that highlight its ability to deliver
real-time analysis with no noticeable latency, even in large
codebases. Our results show that for most projects, INTRAJ
can analyze 99% of the compilation units (one at a time)
in less than 0.1 seconds. This demonstrates INTRAJ’s suit-
ability for integration into modern development workflows
where immediate feedback is crucial.

The paper is structured as follows: we begin with a brief
overview of RAGs and Monotone Frameworks (Section 2),
followed by a presentation of our contributions:

– We present the architecture and APIs of INTRAJ (Sec-
tion 3).

– We demonstrate the integration and use of INTRAJ into
three different development tools, highlighting its flexi-
bility and responsiveness (Section 4).

– We illustrate the framework’s extensibility through the
addition of new client analyses written as RAG specifi-
cations (Section 5).

– We evaluate the performance of INTRAJ in interactive
environments (Section 6).

We then discuss limitations (Section 7) and related work
(Section 8). Finally, we present our conclusions and outline
future work (Section 9).

Add

Sub

Num Num

Add

Num Num

Value=3 Value=5 Value=8 Value=2

v : 3 v : 5 v : 8 v : 2

v : −2 v : 10

v : 8

Fig. 1: Decorated AST representing the expression (3-5) +
(8+2). Attribute v is the value of the expression.

Listing 1: Abstract grammar for the expression language.
abstract Expr;
Add : Expr ::= Left:Expr Right:Expr;
Sub : Expr ::= Left:Expr Right:Expr;
Num : Expr ::= <Value:int>;

Listing 2: Specification of the attribute v .
syn int Expr.v();
eq Add.v() = getLeft().v() + getRight().v();
eq Sub.v() = getLeft().v() - getRight().v();
eq Num.v() = getValue();

2 Background

This section introduces Reference Attribute Grammars for
defining language semantics and monotone frameworks for
reasoning about program dataflow properties. We then illus-
trate how RAGs can express monotone frameworks.

2.1 Reference Attribute Grammars

Reference Attribute Grammars (RAGs) [14] are a formal-
ism for specifying how programming languages should be
evaluated and analyzed. RAGs represent programs as ab-
stract syntax trees (ASTs) decorated with computed proper-
ties called attributes. RAGs extend Knuth’s Attribute Gram-
mars [20] by allowing attributes to reference other AST
nodes. This extension allows RAGs to define relations be-
tween nodes in the abstract syntax tree and to superimpose
graphs over the AST, including name bindings, type hierar-
chies, and control-flow graphs.

To illustrate this concept, we will consider a very simple
arithmetic expression language with additions, subtractions,
and numeric literals. The input text is parsed into an AST
that is decorated with attributes. For example, the decorated
AST of the expression (3− 5) + (8+ 2) is shown in Fig-
ure 1. Each node has an attribute v , which is the value of
the node and its subtree. The value of the whole expression
is then v of the root node.

2.2 Monotone Frameworks 3

Listing 1 shows the abstract grammar for this lan-
guage. To define the abstract grammar and attributes, we
use the meta-compilation system JASTADD [16]. Given a
RAG specification, JASTADD generates Java code for the
AST classes and the attribute evaluation methods. Thus, the
abstract grammar in the example above defines four Java
classes to represent the different program elements.

The classes Add, Sub, and Num are subclasses of the ab-
stract class Expr. Add and Sub have two children, Left and
Right, of type Expr. The Num class has a token Value rep-
resenting the numerical value.

Listing 2 shows the definition of the attribute v . The
attribute is declared on the class Expr, and each subclass de-
fines an equation for it. Each equation names the attribute
on its left-hand side and gives a Java method body without
observable side effects on the right-hand side. For each at-
tribute, JASTADD generates a namesake method, which here
allows v to access the values directly. The equation for a
Num node simply returns its value. Children and tokens are
accessed by methods prefixed with get. The equation for an
Add node accesses v on its children and adds them together.

When attribute equations reference other attributes, their
evaluation may recurse: for example, if we evaluate the v
attribute of the Sub node in Figure 1, the right-hand side of
the equation for Sub. v will recurse into the children, both
of which will use the equation for Num. v and return their
literal values (3 and 5, respectively).

This example uses only synthesized attributes (indicated
by the keyword syn), meaning that their defining equations
are evaluated in the context of the node to which the attribute
belongs, analogously to Java methods. JASTADD supports
other kinds of attributes beyond synthesized ones, such as
inherited attributes, which are evaluated in the context of
the parent node and are used for providing nodes with con-
textual information. This allows passing information down-
wards in the AST, which INTRAJ uses heavily when con-
structing the control-flow graph. Attributes may transitively
depend on their own values, as long as they are explicitly de-
clared to be circular attributes [32,27,13,17]. Circular at-
tributes allow computing fixed points, which is an essential
part of dataflow analysis.

When an attribute is accessed from Java, JASTADD com-
putes it on demand and memoizes the result. Memoization
ensures that once an attribute’s value is computed, it is stored
for future use, preventing redundant calculations and im-
proving efficiency.

2.2 Monotone Frameworks

Many interesting program properties depend on the order in
which different parts of the program execute, and on how
the contents of the program’s variables change over time. To

answer questions about e.g. redundant computations or the
variables’ contents and liveness, modern production com-
pilers and many software tools rely on monotone frame-
works [19,18], a unifying theoretical approach that enables
analyses such as live variables, available expressions, or
reaching definitions.

These analyses propagate information along the control-
flow graph (CFG), a graph that overapproximates all pos-
sible sequences of steps in which a program may execute,
with each step represented as a CFG node.

To express an analysis as a monotone framework, we
combine the CFG with two additional components:

– a datatype that defines the information that we want to
collect, along with an operation that reconciles possibly
conflicting information from different branches (a semi-
lattice, formally speaking), and

– a family of transfer functions that explain how passing
through a CFG node updates this information.

Figure 2 demonstrates this idea with a conservative null
pointer analysis of a Java program. The program on the left-
hand side will throw a NullPointerException when the
method toString is invoked and if the parameter b has the
value false.

The right-hand side of the same figure shows the pro-
gram’s control flow graph, with control flow edges connect-
ing individual statements in the order of execution. For each
of the six control flow nodes, the set ini contains all vari-
ables that might be null before entering the node, and the set
outi contains all variables that might be null afterwards. For
the Entry node, we assume that no variables may be null,
so we set in0 = ∅, If fi is the transfer function for CFG node
i, then outi = fi(ini). For example,

f1(s) = s ∪ {x}

since this CFG node assigns null to variable x. If there is a
CFG edge from node i to node k, propagate the outi to be
ink, as long as i is the only predecessor of k. If node k has
multiple predecessors, we must reconcile (or join) the in-
coming information from all predecessors, as for in4 in our
example. Following convention, we write the reconciliation
or join operator as ⊔. Since we want to conservatively anal-
yse which variables might be null on any control path, we
use the set union, i.e., we set ⊔ = ∪. Therefore, we have
in4 = out2 ⊔ out3 = out2 ∪ out3 = {x}.

The general rule for computing ini and outi is thus:

ini =
⊔

p∈pred(i)

outp (1)

outi = fi(ini) (2)

This kind of analysis is called a forward analysis because
it propagates information from the Entry node to the Exit

4 2 BACKGROUND

void foo(boolean b) {
String x = null;
if (b) {
x = "Hello world";

}
x.toString();

}

Entry

String x = null

if (b)

x = "Hello world"

x.toString()

Exit

TRUE

FALSE

in0 = {}
out0 = {}

in1 = {}
out1 = {x}

in2 = {x}
out2 = {x}

in3 = {x}
out3 = {}

in4 = out2 ⊔ out3 = {x} ⊔ {} = {x}
out4 = {x}

in5 = {x}
out5 = {x}

Fig. 2: Example program (left) and its control-flow graph (right). The CFG is annotated with the in and out sets containing
all the variables that might be null.

node, but monotone frameworks also support backward
analyses that traverse the CFG in the opposite direction
(e.g., for liveness analysis).

If the source program contains a loop, the CFGs may
be circular, which means that the results of outn for some
n may flow back into inn for the same n, directly or indi-
rectly. In these cases we must compute a fixed point, iter-
ating our computation until none of the ini or outi change.
Monotone frameworks define sufficient conditions over the
transfer functions and the join operator to ensure that such
a fixed point always exists, essentially by requiring that we
never discard information and that the information for each
CFG node reaches a saturation point after a finite number of
updates [30].

To express monotone frameworks in RAGs, we can de-
scribe transfer functions and the join operator directly as at-
tribute equations over in and out sets. Since these attributes
will generally recursively depend on themselves, we express
them as circular attributes, which automatically support ef-
ficient on-demand fixed point computation [27,31]. We will
illustrate such attribute encoding in the next subsection.

2.3 Monotone Frameworks as RAGs

RAGs provide a natural way to express monotone frame-
works by using attributes to represent key concepts such as
transfer functions and information flow between CFG nodes.
To illustrate, we use the null-pointer analysis example in
Figure 2, which we express using attributes in JASTADD.

The analysis is defined for each CFGNode, an interface
implemented by all nodes that appear in the CFG. Addi-

tional details about the CFGNode interface and its implemen-
tations are provided in the next section.

Using this approach, we implement a simple null-
pointer analysis focusing on two key attributes: inNPA and
outNPA , which represent the dataflow information entering
and leaving each CFG node, respectively. To clearly distin-
guish attributes specific to the null-pointer analysis, we ap-
pend NPA to attribute names.

Transfer Function. With RAGs, the transfer function can be
modeled using a synthesized attribute (using the keyword
syn). This attribute specifies how each CFGNode processes
the incoming information and transforms it based on the
node’s local context:

Listing 3: Definition of the transferNPA synthesized at-
tribute for Null Pointer Analysis. The default implementa-
tion propagates the input nullability information, while spe-
cialized equations for assignment nodes (Assign), update
the nullability state of variables.
syn NullDomain CFGNode.transferNPA(NullDomain domain) {
return domain;

}

eq Assign.transferNPA(NullDomain domain) {
Variable decl = getDeclaration();
if (canRightHandSideBeNull()) {
domain.put(decl, Nullness.MAYBENULL);

} else {
domain.put(decl, Nullness.NOTNULL);

}
return domain;

}

The default implementation of the transfer function, i.e.,
transferNPA , for the CFGNode interface simply propagates
the input NullDomain, leaving it unchanged. NullDomain is
a map of variables to nullness information, which is either

3.1 The EXTENDJ Compiler 5

MAYBENULL, NOTNULL or BOTTOM. By using the keyword eq,
we override the default definition of the attribute for specific
AST nodes. For example, the equation for Assign nodes
modifies the nullability information in NullDomain based
on the value of canRightHandSideBeNull() . This mech-
anism allows specialized behavior for specific AST node
types, ensuring that the transfer function accurately reflects
the semantics of each CFG node in the analysis.

Fixed-Point Computation. Circular attributes allow defining
dependencies that require fixed-point computation [32,26],
essential for analyses over cyclic CFGs, e.g., programs with
loop constructs. Listing 4 shows how the equations 1-2 are
implemented as circular attributes in the RAG framework.

Listing 4: Definition of circular attributes inNPA and outNPA
for Null Pointer Analysis (NPA).
syn NullDomain CFGNode.inNPA() circular[new NullDomain()] {
NullDomain res = new NullDomain();
for (CFGNode p: pred()) {
res.join(p.outNPA());

}
return res;

}

syn NullDomain CFGNode.outNPA() circular[new NullDomain()] {
return transferNPA(new NullDomain(inNPA()));

}

The inNPA attribute joins the outgoing information
(outNPA) from all the predecessor nodes using a join op-
eration. The attribute outNPA applies the transfer function
on the incoming information (inNPA). A circular attribute
also needs a bottom value, which in this case is an empty
variable map (new NullDomain()). These circular defini-
tions are evaluated iteratively until a fixed point is reached,
ensuring that the analysis converges to a stable result.

Error Detection. To detect potential null-pointer deref-
erence errors, we define the synthesized attribute
isNullable , which checks whether a variable is deref-
erenced and appears as null in the abstract domain. This
criterion ensures precise detection of possible errors, as
illustrated by the following synthesized attribute:

syn boolean VarAccess.isNullable() {
Nullness n = inNPA().get(varDecl());
return isDereferenceOperation() && n == Nullness.MAYBENULL;

}

3 INTRAJ Architecture

INTRAJ is a framework for the construction of CFGs for
Java 111. It is entirely built using RAGs and offers an
exception-sensitive control-flow analysis, considering both
checked and unchecked exceptions. On top of INTRAJ, we

1 The complete implementation of INTRAJ is available on GitHub
at https://github.com/lu-cs-sde/IntraJ.

have implemented a number of dataflow analyses, such as
Live Variable analysis, Reaching Definition analysis, and a
Null Pointer Dereference analysis.

INTRAJ is an instance of the INTRACFG framework
for control-flow analysis, which is a language-independent
framework for defining control-flow graphs using RAGs.
INTRAJ is built on top of the EXTENDJ Java compiler,
which is also implemented using RAGs.

Figure 3 presents the INTRAJ architecture as layers of
RAG components and subcomponents. Each component and
subcomponent defines an attribute API, and uses the APIs of
its own and lower layers. We will now discuss each compo-
nent and subcomponent in more detail.

3.1 The EXTENDJ Compiler

EXTENDJ is an open-source extensible Java compiler im-
plemented using RAGs. It currently supports Java 4–11, in-
cluding parsing, compile-time checking, and bytecode gen-
eration. EXTENDJ defines the node types of a Java AST,
such as different kinds of declarations, statements, and ex-
pressions. It also defines a number of RAG attributes for
these node types, like name bindings, types, compile-time
errors, and bytecode. EXTENDJ offers thousands of prede-
fined attributes available as an API for the programmer to
use when building analyses or transformations. As for any
RAG-based system, the attributes are computed on demand,
and the computation is driven by the attribute API2.

Once the AST has been constructed, the programmer can
call any attribute method to get its value. No explicit compi-
lation passes like name binding, typechecking or code gen-
eration are needed. To compile a Java program, EXTENDJ
simply parses the source text into an AST, calls an error
attribute to see if there are compile-time errors, and calls
bytecode attributes to print the resulting bytecode to suitable
class files.

3.2 The INTRACFG component

INTRAJ is an instance of INTRACFG, a language-agnostic
RAG component for CFG construction. INTRACFG in-
troduces language-independent abstractions for CFG node
specification through a set of node type interfaces, which
are analogous to Java interfaces but include overridable de-
fault attribute equations. Language developers can imple-
ment INTRACFG by adapting these interfaces to the AST
nodes of their language, thus benefiting from a flexible CFG
construction mechanism that adjusts to the syntactic and se-
mantic requirements of a given language [33].

2 The complete EXTENDJ API is available at https://extendj.
org/javadoc/.

https://github.com/lu-cs-sde/IntraJ
https://extendj.org/javadoc/
https://extendj.org/javadoc/

6 3 INTRAJ ARCHITECTURE

IntraCFG

ExtendJ - Java 11 Compiler

CLI
LSP-based

Editor
CodeProber

Dead
Assignment

Faint
Assignment

Null Pointer
Dereference

Live Variable
Analysis

Reaching
Definition

May
Null

CFG for Java 8
CFG for Java 7
CFG for Java 5

CFG for Java 4

Control-flow subcomponent

Legend

Dataflow subcomponent

Client analysis subcomponent

Control-flow layer

Dataflow layer

Client analysis
layer

RAG component

Compiler layer

Tool layer

IntraJ
uses

Fig. 3: Layered architecture of INTRAJ. Each INTRAJ layer builds upon the attributes of the underlying layers.

<<Interface>>
CFGRoot

entry: Entry

exit: Exit

<<Interface>>
CFGNode

succ: Set<CFGNode>

pred: Set<CFGNode>

<<Class>>
Entry

<<Class>>
Exit

Fig. 4: Main API of INTRACFG.

Figure 4 shows the main API of INTRACFG in the form
of interfaces and classes. The CFGRoot interface is intended
for AST node types that represent subroutines, e.g., method
and constructor declarations in Java. Each AST node type
that implements the CFGRoot interface is automatically ex-
tended with two synthetic AST nodes, Entry and Exit, for
the unique entry and exit points of that subroutine’s CFG.

The CFGNode interface is intended for AST nodes that
participate in the CFG as CFG nodes. Each AST node type
that implements this interface obtains the attributes succ
and pred through default equations. succ returns the con-
trol flow successors, and pred returns the predecessors of
that node, respectively.

3.3 INTRAJ Control-Flow Analysis

To define control-flow graphs for Java, INTRAJ adds the
INTRACFG interfaces to selected EXTENDJ node types, and
adds and overrides attributes to define the detailed control
flow. For INTRAJ, we have chosen to construct CFGs at the
expression level. While this design does not increase the pre-
cision of the analysis itself, it provides finer-grained con-
trol over the flow of execution, allowing the analysis to con-
sider individual expressions. This approach may require the
developer to define transfer functions for more AST node
types, ensuring that each expression within a block is tra-
versed explicitly, rather than treating entire basic blocks as
single units.

However, this additional effort can often be reduced by
using node type interfaces, which allow shared behavior to
be defined across multiple AST node types. For example,
as shown in Listing 3, the transferNPA transfer function
is defined for the Assign interface. This single definition
applies uniformly to all AST node types that implement
Assign, including VariableDeclarator, AssignExpr, and
ImplicitAssignment. This approach significantly reduces
redundancy, as it eliminates the need to define the transfer
function separately for each implementing node type.

3.4 Dataflow and Client Analyses 7

Child

MethodDecl
foo

ParamDecl
boolean b

DeclStmt
String x = null

IfStmt

VarAccess
b

AssignStmt

Dot

VarAccess
x

MethodAccess
toString()

VarAccess
x

Literal
 "Hello world"

succ:{ }

succ:{ , }

succ:{ }succ:{ }

succ:{ } succ:{ }

Entry Exit

succ:{ } succ:{}

Legend

Synthetic CFG node

Excluded AST node

Successor

Source Code

CFG node

CFG root node

void foo(boolean b){
String x = null;
if(b) {
x = "Hello World";

}
x.toString();

}

Fig. 5: AST with superimposed CFG for the foo Java method.

The CFGRoot interface is added to the EXTENDJ types
MethodDecl and ConstructorDecl so that each method
and constructor gets a local CFG. Such additions are done
by a simple specification statement in the RAG specification
language, e.g.: MethodDecl implements CFGRoot.

The CFG is then constructed by adding the CFGNode in-
terface to a number of AST node types, to reflect the con-
trol flow of statements and expressions. Attribute rules are
added to define the detailed control flow so that it complies
with the semantics of Java. This way, the CFG is constructed
by superimposing it on a subset of the AST nodes. Not all
AST nodes need to be included in the CFG, and synthetic
AST nodes can be created to capture flow that is implicit,
allowing a concise and precise graph to be constructed.

Figure 5 shows a simple example for a Java method foo.
Here, the MethodDecl is a CFG root, and therefore auto-
matically gets synthetic Entry and Exit nodes. The AST
nodes of the types DeclStmt, VarAccess, Literal, and
MethodAccess nodes are all CFG nodes. We can note that
some nodes are excluded from the CFG. For example, the
IfStmt is not part of the CFG since its control flow is cap-
tured by nodes in its subtree. The successor edges are cap-
tured by the succ attribute that contains references to the
successor nodes in the graph. The pred attribute (not shown
in the figure), represents the predecessor edges and is com-
puted automatically by the INTRACFG component as the
reverse of the successors.

The INTRAJ CFG specification is structured into sub-
components, as shown in Figure 3, one for each version of

Java3. This matches a similar subcomponent structure inside
EXTENDJ, allowing Java compilers to be built for different
language versions. If support for newer Java versions, such
as Java 12, were added to EXTENDJ, only the subcompo-
nent for Java 12 would need to be implemented, while the
existing components could be reused.

A more detailed description on the construction of the
INTRAJ CFGs can be found in [33].

3.4 Dataflow and Client Analyses

INTRAJ provides a number of example analyses in its client
and dataflow layers. Figure 6 shows the APIs of these anal-
yses, and how they use each other. They also use the APIs in
the lower level CFG and compiler layers. The dataflow layer
implements various analyses, including Live Variable Anal-
ysis, Reaching Definition Analysis, and May Null Analy-
sis. These analyses compute dataflow facts for each node in
the CFG. For instance, the outLVA attribute computes the
set of variables that are live after a given CFG node. This
means it determines which variables are used on any path
from the current CFG node to the Exit node. The Reaching
Definition Analysis, like Live Variable Analysis, tracks the
definitions that reach each CFG node, considering transitive
assignments. Similarly, the May Null Analysis determines
the nullness status of reference variables at each node.

The analyses in the client layer make use of the general
dataflow analyses to interpret the results in a way suitable for

3 No subcomponent is needed for Java 6, Java 9, Java 10, or Java
11, as these versions did not introduce any new language constructs or
semantics affecting control flow.

8 3 INTRAJ ARCHITECTURE

<<Interface>>
Assignment

isDeadAssign: boolean

<<Interface>>
Assignment

isFaint: boolean

VarAccess

isNullable: boolean

<<Interface>>
CFGNode

inLVA: Set<Variable>

outLVA: Set<Variable>

useLVA: Set<Variable>

defLVA: Set<Variable>

<<Interface>>
CFGNode

inRD: Set<Variable>

outRD: Set<Variable>

genRD: Set<Variable>

killRD: Set<Variable>

<<Interface>>
CFGNode

inNPA: Map<Variable, Nullness>

outNPA: Map<Variable, Nullness>

Dead Assignment Faint Assignment Nullness

Live Variable Analysis Reaching Definition May Null Analysis

depends-on

Dataflow layer

Client analysis
layer

depends-on depends-onde
pe

nd
s-

on

Fig. 6: The APIs exposed by the INTRAJ’s dataflow and client analyses.

client tools. For example, in the Dead Assignment compo-
nent, the Assignment interface is extended with a boolean
attribute isDeadAssign . This attribute is true if the CFG
node of the assigned variable represents a dead assignment
(i.e., the assigned variable is not in the outLVA set) and if
additional language-specific conditions are met, to capture
heuristics.

As an example of a heuristic condition, consider the dec-
laration of a local variable with an initializing assignment.
If the initializer is a usual default value in Java, like null
or zero, the developer will typically consider this as good
programming practice, even if the assignment is technically
dead. Therefore, isDeadAssign is defined as false in this
case. The client analysis uses the rich API of EXTENDJ to
easily specify such conditions.

The faint assignment analysis [30] is a client analysis
that demands the computation of dead assignment analysis
to find assignments that are not dead themselves, but are in-
directly dead, i.e., used only by dead assignments or other
faint assignments.

Figure 7 showcases examples of bugs detected by the
analyses supported by INTRAJ. In the first example, the ini-
tializer for x is identified as a dead assignment, meaning it
is assigned a value which is never used thereafter. Similarly,
the initializer for y is a faint assignment because its value is
assigned but only used as an operand in the assignment int
z = x + y, which itself is identified as a dead assignment
since the resulting value of z is never used.

The second example illustrates a potential null pointer
exception. INTRAJ detects that there is a potential null
pointer exception in the code snippet since the variable x is
assigned the value null and then dereferenced in the state-
ment x.toString().

3.5 Demand-Driven Analyses

As mentioned earlier, the attributes in both EXTENDJ and
INTRAJ are computed on demand. Figure 8 illustrates how
this works for the May Null analysis. The example is the
same as in Figure 5, but showing only the CFG nodes, and
not the full AST. In the example, the dereference of x in
the statement x.toString(); may generate a null pointer
exception, namely if the boolean parameter b is false. The
dereference is represented by a VarAccess node in the AST.
To investigate if it can give a null pointer exception, a tool
would query its isNullable attribute.

Querying isNullable will lead to the recursive evalu-
ation of a number of additional attributes, as shown in Fig-
ure 8. In this example, evaluation of isNullable will use
the inNPA attribute of the same node, which is defined us-
ing the outNPA attributes of the predecessors, which in turn
are defined using inNPA attributes, and so on, recursively
along the predecessors, all the way to the Entry node.

The inNPA and outNPA attributes contain the nullness
status of variables right before and after the CFG node, re-
spectively. For example, consider the the assignment x =
"Hello world", represented by the VarAccess for x. Here
inNPA shows that x is MAYBENULL prior to the assignment,
and outNPA shows that x is NOTNULL (i.e., it is definitely
referring to an object).

To compute the outNPA of a node, the inNPA is com-
bined with a transfer function that may use attributes de-
fined by EXTENDJ, such as the decl attribute linking a
VarAccess to its declaration (not shown in the figure). These
attributes are also evaluated on demand. Thus, when a tool
queries a specific attribute, only a subset of all available at-
tributes will be evaluated. Usually, this subset is very small,

4.2 Editor Integration 9

1 2

Fig. 7: Examples of bugs detected by INTRAJ. 1. Examples of dead and faint assignments. 2. Example of null pointer
exception.

even for the first query when no attributes have yet been
memoized.

4 Tool Integration

In this section, we discuss the integration of INTRAJ with
different development tools. We examine three major appli-
cations of INTRAJ: command line integration, editor inte-
gration based on the Language Server Protocol, and integra-
tion into the debugging tool CODEPROBER. Each of these
integrations highlights different ways that INTRAJ can be
used in tools.

The command line integration allows developers to run
the analysis on the entire codebase, providing a compre-
hensive overview of the issues in a project. The Language
Server Protocol (LSP) is a standardized interface that en-
ables editors and IDEs to communicate with language-
specific analysis tools. Our LSP integration enables viewing
issues in an edited file, running the analysis on save. This
approach provides a shorter feedback loop, allowing devel-
opers to address issues as they are introduced. Finally, the
CODEPROBER integration shows that INTRAJ is fast enough
to operate on every keystroke, delivering real-time analysis
and feedback for immediate bug detection.

4.1 Command line Integration

Originally, INTRAJ was developed as a command line tool,
exhibiting competitive performance when compared to ex-
isting industrial tools [33]. The command line integration
is suitable for continuous integration pipelines, as it can be
easily integrated into existing workflows.

The command-line interface is similar to the JAVAC and
EXTENDJ compilers, supporting the specification of, for ex-
ample, classpath, sourcepath, libraries, and files to be ana-
lyzed/compiled. Specific INTRAJ flags include what analy-
ses to enable for warnings, such as -WNPA, -WDAA for null
pointer analysis and dead assignment analysis, respectively.

Figure 9 illustrates an example of INTRAJ running on the
command line. The -statistics flag is used to summarise
the analysis results, displaying the number of warnings and

statistics related to the CFGs. When specified, the -succ flag
generates a PDF file visualising the CFGs of the analysed
methods.

4.2 Editor Integration

The demand-driven evaluation in INTRAJ makes it very suit-
able for integration with interactive tooling: analyses can
be performed efficiently on individual program elements or
files, even if the analysis depends on information in a larger
project. To investigate this kind of integration, we used the
MAGPIEBRIDGE framework [25], which facilitates the in-
tegration of static analysers with IDEs that support LSP.
MAGPIEBRIDGE provides an abstraction layer between the
LSP protocol and the static analysis tool, allowing for the
development of IDE plug-ins with a very low effort. It reruns
the analyses after each save in the editor. The supported LSP
functionalities include diagnostics, code actions (e.g., quick
fixes), and code-lens.

Figure 10 illustrates the integration of INTRAJ with dif-
ferent IDEs via MAGPIEBRIDGE. SERVERANALYSIS is a
component we developed to handle the communication be-
tween INTRAJ and the MAGPIEBRIDGE Server. It is respon-
sible for maintaining a record of the active analyses and for-
warding events in the editor, such as the save command or
opening of a file, to INTRAJ. The analysis results are then
sent back to MAGPIEBRIDGE, which subsequently forwards
them to the editor, displaying warnings, quick fixes, and ex-
planations to the developer.

Our initial implementation of the client analyses in-
cluded only the identification of issues, like dead assign-
ments and potential null pointer exceptions. To take advan-
tage of the support from MAGPIEBRIDGE, we added expla-
nations of the warnings, and also quick fixes for Null Pointer
issues.

Figure 11 illustrates an example of interaction be-
tween INTRAJ and VISUAL STUDIO CODE. More
specifically, it illustrates an instance of a potential
NullPointerException detected by INTRAJ and its rep-
resentation within the IDE. The lightbulb icon () indicates

10 4 TOOL INTEGRATION

outNPA:{x=MAYBENULL}

DeclStmt
String x = null

VarAccess
b

VarAccess
x

VarAccess
x

Literal
 "Hello world"

Entry

Exit

Source Code

MethodAccess
toString()

inNPA:{}
outNPA:{x=MAYBENULL}

inNPA:{x=MAYBENULL}

inNPA:{x=MAYBENULL}

outNPA:?

inNPA:?

outNPA:?

isNullable: True

isNullable:?

Legend

Successor

CFG Node

Computed Attribute

Not computed attribute

isNullable:?

inNPA:{}
outNPA:{}

inNPA:{x=MAYBENULL}

inNPA:?
outNPA:?

outNPA:{x=NOTNULL}

Queried Attribute

inNPA:{x=MAYBENULL}
outNPA:{x=MAYBENULL}

Not computed successor

void foo(boolean b){
String x = null;
if(b) {
x = "Hello World";

}
x.toString();

}

Fig. 8: On-demand evaluation example. Querying isNullable on a dereferenced VarAccess leads to the computation of
only a subset of the NPA attributes. Note that the figure elides EXTENDJ attributes, most of which the evaluation does not
depend on (and therefore never computes).

Fig. 9: Example of INTRAJ running on the command line.

that a quick fix is available, which can be applied by clicking
on the icon.

4.3 CODEPROBER Integration

To investigate an even tighter integration with the editor,
we have integrated INTRAJ with CODEPROBER [1], a tool
for visualising and exploring the results of compilers and

static analysers on an edited program. CODEPROBER sup-
ports exploring partial analysis results such as properties of
AST nodes, and is therefore particularly suited for RAG-
based tools that use on-demand evaluation. It is browser-
based and can support visualizations beyond what is pos-
sible via the Language Server Protocol. The visualizations
are live and updated as the user edits the analyzed program.
Unlike LSP-based tools, CODEPROBER triggers attribute
evaluation on each keystroke, enabling real-time interaction

11

LSP

IDEs

IntraJ
Server
Analysis

MagpieBridge
Server

Fig. 10: Integration of INTRAJ with IDEs through the use
of the MAGPIEBRIDGE framework.

1

2

3

Fig. 11: Bug detection and quick fix in VISUAL STUDIO

CODE using INTRAJ. 1. The NullPointerException is de-
tected by INTRAJ (squiggly line under x) with a quick fix
available (). 2. The user can hover over the warning to
see an explanation of the issue. 3. The user can click on the
quick fix icon () to apply the fix.

with the analysis results. In contrast, LSP-based tools typ-
ically perform analysis less frequently, such as on file save
or when a file is opened. As demonstrated in Section 6, IN-
TRAJ is fast enough to support the execution of analyses
on each keystroke, making it suitable for integration with
CODEPROBER.

The example in Figure 12 shows the visual representa-
tion of the CFG on top of the source code. The CFG is gen-
erated by INTRAJ and visualised by CODEPROBER. It also
shows the diagnostics that are displayed when hovering over
the squiggly lines. The CFGs and the analysis results are

1

2

Fig. 12: Integration of INTRAJ in CODEPROBER. A. The
CFG of the method foo is superimposed on the source code.
(Edge colors are randomly picked.) B. Diagnostics can be
accessed by hovering over them, providing explanations of
the identified issues.

computed automatically at each keystroke, allowing devel-
opers to interact with the results in real-time.4

5 Extending INTRAJ

INTRAJ is inherently extensible due to its use of Reference
Attribute Grammars [14].

In this section we explore different ways to extend IN-
TRAJ and discuss the possibilities for adding new analyses
and supporting additional language constructs.

5.1 Extending INTRAJ’s Functionality

INTRAJ can be extended by adding new modules that
provide additional attributes and equations to the existing
AST. JASTADD provides a modular extension mechanism
for RAGs, which allows new modules to be added to IN-
TRAJ without modifying the existing codebase. These mod-

4 Courtesy of the CODEPROBER developer, Anton Risberg Alaküla,
a demo version of this integration is available online at https://gi
thub.com/Kevlanche/codeprober-playground. Enter the code
from Figure 12 in the editor. Open a probe for MethodDecl. showCFG
to get the CFG visualization, and one on Program. showAnalysis to
get the diagnostics for null-pointer exceptions. Edit the code to see the
immediate response.

https://github.com/Kevlanche/codeprober-playground
https://github.com/Kevlanche/codeprober-playground

12 5 EXTENDING INTRAJ

Listing 5: Definition of the isFaint attribute, which deter-
mines if an assignment is implicilty dead.

1 syn boolean CFGNode.isFaint() {
2 if (allUses().isEmpty() || this.isDead()) {
3 return false;
4 }
5
6 for (CFGNode candidate : allUses()) {
7 if (candidate != this && !candidate.isDead() &&

!candidate.isFaint()) {
8 return false;
9 }

10 }
11 return true;
12 }

ules can be independently developed and, if desired, sub-
sequently integrated into INTRAJ to provide supplementary
functionality. To illustrate this extensibility, we provide ex-
amples from various INTRAJ submodules: one demonstrat-
ing the addition of a new analysis, another showcasing a
separate analysis for information flow, and a third example
detailing how existing analyses can be extended to support
newer Java versions.

5.2 Addition of New Analyses

The existing dataflow and client analyses serve as examples
for how to add new dataflow-based analyses. As an example,
consider the Faint Assignment module. It uses results from
the ordinary Dead Assignment module and from the Reach-
ing Definitions (RD) module. The key attribute that defines
this analysis is the isFaint attribute, which is shown in
Listing 5. This attribute is defined on the CFGNode inter-
face, which is implemented by all nodes in the CFG. The
attribute definition is written as a method body, but without
side-effects, using other attributes as needed (see API Fig-
ure 6). It uses the isDeadAssign attribute, computed by
the ordinary Dead Assignment module. It also uses a local
attribute allUses (not shown) that in turn is defined us-
ing the inRD attribute from the Reaching Definition com-
ponent. Because the analysis is implemented using RAGs, it
is automatically evaluated on-demand.

5.3 Information Flow

Another example of an extension to the INTRAJ frame-
work is SINFOJ [38], an information flow analysis similar to
JFlow [28]. The goal of this analysis is to detect if sensitive
data is leaked to untrusted sources. The developer classifies
variables according to how sensitive they are. In SINFOJ, the
following lattice is used for labeling variables (from lower
to higher): Bottom → Unclassified → Confidential →
Secret → TopSecret. The analysis can then, for example,

identify if a variable labeled as TopSecret is leaking infor-
mation to variables classified with lower security labels.

A simple example is shown in Figure 13, where vari-
ables are labelled using Java annotations. The analysis de-
tects that the variable z is leaking information, since it is
labeled as Unclassified, but uses information from vari-
ables with security labels Secret and Confidential.

SINFOJ reuses the CFG from INTRAJ but builds its own
dataflow analysis as an instance of the monotone framework
described in Section 2.2. Variables and their labels are prop-
agated forward in the control flow. Each CFG node has an in

and out set, consisting of the variables and their labels be-
fore and after the effect of the CFG node, respectively. The
transfer function defines the effect, thus, how in is trans-
formed into out.

In the implementation, in and out are defined as the at-
tributes inIF and outIF (IF as in Information Flow). Fig-
ure 13 shows the value of these attributes for the last vari-
able declaration z. In this example, inIF is transformed
into outIF by adding z=Secret, since that is the highest la-
bel used in the right-hand side of the assignment. The figure
also includes the attribute isUnsafeIF , which has the value
true for this declaration, meaning it is an information flow
violation. It may be tedious to annotate all variables with la-
bels, thus some of them can be omitted and automatically
derived. For instance, it would be possible to omit the anno-
tation for z. Then, the label would be derived to Secret, and
the declaration would no longer yield a violation.

Part of the definition of the information flow is shown
in Listing 6. The inIF and outIF are implemented like a
normal forward analysis, using the attribute pred provided
by INTRAJ to propagate information forward in the con-
trol flow graph. Both attributes compute a value of the type
IFDomain, which is a mapping from variables to security la-
bels. The attribute inIF joins all outIF of its predecessors
by keeping the highest label of each variable. The outIF at-
tribute applies the transfer function to inIF , e.g., the effect
of the CFG node. The transfer function is shown for vari-
able declarations, where the highest label is used from ei-
ther the annotation or the right-hand side of the declaration
(if it has one). The attributes inIF and outIF are circu-
lar, like inNPA and outNPA (described in Section 2.3). The
bottom value for the circular attributes is an empty variable
map (new IFDomain()).

SINFOJ contains more analysis than shown here, like
protecting against conditionals leaking information in con-
trol structures. For instance, if a TopSecret variable is used
in a condition of an if statement, then that might leak in-
formation to the statements insides the branches. This issue
is handled by another analysis also defined using the mono-
tone framework. SINFOJ was implemented by Max Soller
as a master thesis. This illustrates that INTRAJ can be ex-
tended by students for non-trivial use cases. The Figure 13

5.4 New Language Constructs 13

Fig. 13: SINFOJ is an example extension that detects information flow violations (line 10).

Listing 6: Part of the definition of information flow in SIN-
FOJ. (Source code from SINFOJ implementation. Complete
code available at https://bitbucket.org/jastadd/info
flow-exjobb-max-soller)
syn IFDomain CFGNode.inIF() circular[new IFDomain()] {
IFDomain res = new IFDomain();
for (CFGNode p: pred()) {
res.join(p.outIF());

}
return res;

}

syn IFDomain CFGNode.outIF() circular[new IFDomain()] {
return transferIF(new IFDomain(inIF()));

}

// Transfer function. Default behaviour
syn IFDomain CFGNode.transferIF(IFDomain domain) {
return domain;

}
// Transfer function for variable declarations
eq VariableDeclarator.transferIF(IFDomain domain) {
LabelDomain label = LabelDomain.BOTTOM;
// Label from annotation
if (annotatedFlowLabel().isHigherThan(label)) {
label = annotatedFlowLabel();

}
// Label from initializer expression
if (hasInit()) {
label = label.returnHighest(getInit().flowLabel());

}
// Update label for this variable
domain.join(this, label);
return domain;

}
...

is a screenshot of SINFOJ in CODEPROBER, illustrating how
attributes easily can be explored when developing analyses.

5.4 New Language Constructs

The Java language is constantly evolving, with new lan-
guage constructs being introduced in almost each new ver-
sion. As new language constructs are introduced, EXTENDJ
can be extended to handle them appropriately. INTRAJ, be-
ing built on top of EXTENDJ, can be easily extended as well
to support these new features. The possibility of doing this

Listing 7: Adding support for EnhFor construct to INTRAJ.
1 EnhFor implements CFGNode;
2
3 // Defines the first node that should be traversed when visiting an
4 // Enhanced For statement
5 eq EnhFor.firstNodes() = getExpr().firstNodes();
6
7 // The successor of the collection is the variable declaration or
8 // the what follows the Enhanced For statement in case the collection
9 // has been completely traversed.

10 eq EnhFor.getExpr().nextNodes() =
Set.union(getVarDecl().firstNodes(), nextNodes());

11 eq EnhFor.getStmt().nextNodes() = getExpr().firstNodes();
12 eq EnhFor.getVarDecl().nextNodes() = getStmt().firstNodes();
13
14 eq EnhFor.nextContinue() = getExpr().firstNodes();

is already demonstrated by the modular support of INTRAJ
for Java 4 to 8. This guarantees the compatibility of INTRAJ
with the evolving nature of the Java language.

The code in Listing 7 shows an example of how the CFG
is extended to support the Enhanced For statement intro-
duced in Java 5. As can be seen from the Listing, the number
of lines of code required to support the new language con-
structs is very small: The first two lines specify that the new
construct also serve as CFG nodes. The remaining lines are
equations that override default attribute definitions from IN-
TRACFG (firstNodes , nextNodes , nextContinue) in
order to define the control flow for the EnhFor AST node.

The use of node type interfaces further simplifies the
process of supporting new language constructs into INTRAJ.
This approach eliminates the need to modify existing analy-
ses since they rely on the CFGNode interface rather than the
AST node types. As a result, the addition of new language
constructs does not require the modification of existing anal-
yses. For example, by adding CFG support for the EnhFor
construct, all dataflow analyses, including SINFOJ, will au-
tomatically handle programs containing EnhFor statements
without additional modifications.

https://bitbucket.org/jastadd/infoflow-exjobb-max-soller
https://bitbucket.org/jastadd/infoflow-exjobb-max-soller

14 6 EVALUATION

Benchmark Name LOC Files #Methods Version Application
commons-jxpath 24320 213 2030 1.3 XPath expression processing
antlr 36525 192 2070 2.7.2 Parser generator
jackson-core 48599 280 3687 commit #c5b123b Core JSON processing library
pmd 60749 752 5325 4.2.5 Source code analyzer
struts 81394 1111 7023 2.3.22 Web application framework
joda-time 86562 330 9324 2.10.13 Date and time library
jfreechart 95664 736 6980 1.0.0 Chart library
fop 102746 1047 8318 0.95 XSL-FO processing library
extendj 147265 396 16025 11.0 Java compiler
castor 235745 1711 12643 1.3.3 Data binding framework
weka 245719 1223 14952 revision 7806 Machine learning library
poi 329366 2959 23816 3.11 Microsoft Office file processing

Table 1: Evaluated Java benchmarks, including number of lines of code, number of methods, version, and application.

6 Evaluation

This section presents the performance evaluation of INTRAJ,
focusing on its suitability for on-demand analysis in inter-
active environments. While precision is essential for static
analysis, this evaluation emphasizes the tool’s performance.
The precision of INTRAJ has already been assessed in our
previous work [33], where we demonstrated that INTRAJ
achieves precision comparable to SONARQUBE, a widely
used industrial tool, and JASTADDJ-INTRAFLOW [36], an
academic RAG-based analysis tool. Here, our objective is
to evaluate INTRAJ’s responsiveness and efficiency in inter-
active analysis scenarios, focusing on the time required to
analyze compilation units.

The evaluation aims to demonstrate that INTRAJ can
provide interactive feedback to developers by analyzing
most compilation units in under 0.1 seconds. To simulate an
interactive environment, we evaluate each compilation unit
independently, measuring the tool’s performance in a realis-
tic setting.

To assess the performance of INTRAJ, we conducted ex-
periments on two different analyses: Dead Assignment Anal-
ysis and Null-Pointer Dereference Analysis. Since the sce-
nario is in an interactive environment, we measure the ex-
ecution times of the analyses when the JVM is in a steady
state. For each compilation unit, the analysis is first com-
puted 25 times to warm up the JVM. Then, we record 25
measurements of the analysis and compute the mean. Be-
tween each measurement, the memoized results are explic-
itly flushed to ensure that each analysis is performed from
scratch. The results reported focus exclusively on the analy-
sis time, excluding the time required for program parsing.

The evaluation was performed on a machine with an In-
tel Core i7-11700K CPU running at 3.60GHz, 128 GB of
RAM, and Ubuntu 22.04.3. The benchmarks were executed
using the OpenJDK Runtime Environment Zulu 8.50.0.53-
CA-linux64, build 1.8.0_275-b01, with the JVM heap size
set at 8 GB.

The evaluation of INTRAJ uses Java benchmark projects
selected from real-world applications, varying in both type
and size. These benchmarks included projects from the
DaCapo [5] and Qualitas [42] benchmark suites, such
as antlr and jfreechart, alongside additional projects
specifically chosen to cover a broad spectrum of appli-
cations, e.g., extendj. The selected projects ranged from
6,000 to 320,000 lines of code, ensuring a diverse set of
benchmarks for the evaluation. A summary of the bench-
marks used in the evaluation is presented in Table 1.

6.1 Dead Assignment Analysis

Dead Assignment Analysis is a static analysis technique de-
signed to identify assignments to variables that are never
read, indicating potential bugs or unnecessary code.

The results of this analysis are detailed in Table 2.
The analysis times are notably efficient, with the ma-

jority of compilation units being processed in under 0.1 sec-
onds. In six out of the twelve benchmarks, INTRAJ analyzed
all compilation units within this 0.1-second threshold. For
the remaining benchmarks, most compilation units that ex-
ceeded the 0.1-second mark still completed analysis within
0.1 to 0.2 seconds. No compilation unit required more than
1 second for analysis.

6.2 Null-Pointer Dereference Analysis

Null-pointer Dereference Analysis is a static analysis tech-
nique designed to detect potential null-pointer dereference
errors within a program. This analysis extends the May Null
analysis, a flow-sensitive and context-insensitive approach
that tracks the potential nullness of variables. To perform the
May Null analysis, INTRAJ constructs the forward control-
flow graph on-demand and computes the predecessor rela-
tionship as the inverse of the successor relationship for the
relevant variables.

6.2 Null-Pointer Dereference Analysis 15

BENCHMARK
ANALYSIS FILE MEAN ANALYSIS MEAN MEASURMENTSTIME RANGE COUNT TIME (S) FILE LOC

COMMONS-JXPATH
≤ 0.1s 213 (100%) 0.0015 114

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

ANTLR
≤ 0.1s 192 (100%) 0.0027 175

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

JACKSON-CORE
≤ 0.1s 280 (100%) 0.0054 174

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

PMD
≤ 0.1s 751 (99.9%) 0.0019 69

0.1s - 0.2s 1 (0.1%) 0.1634 8913
0.2s - 1.0s 0 − −

STRUTS
≤ 0.1s 1111 (100%) 0.0022 73

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

JODA-TIME
≤ 0.1s 330 (100%) 0.0118 262

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

JFREECHART
≤ 0.1s 735 (99.9%) 0.0054 129

0.1s - 0.2s 1 (0.1%) 0.1358 1132
0.2s - 1.0s 0 − −

FOP-0.95
≤ 0.1s 1046 (99.9%) 0.0025 97

0.1s - 0.2s 1 (0.1%) 0.1061 1258
0.2s - 1.0s 0 − −

EXTENDJ
≤ 0.1s 357 (90.2%) 0.0199 251

0.1s - 0.2s 21 (5.3%) 0.1388 860
0.2s - 1.0s 18 (4.6%) 0.3393 2202

CASTOR
≤ 0.1s 1711 (100%) 0.0019 94

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

WEKA
≤ 0.1s 1216 (99.4%) 0.0066 190

0.1s - 0.2s 5 (0.4%) 0.1203 1635
0.2s - 1.0s 2 (0.2%) 0.2959 3488

POI
≤ 0.1s 2954 (99.8%) 0.0039 108

0.1s - 0.2s 5 (0.2%) 0.1519 2031
0.2s - 1.0s 0 − −

Table 2: Steady-state performance of INTRAJ for Dead Assignment Analysis for single compilation units across different
Java benchmarks. Each plot overlays a histogram and a scatterplot, with the X axis representing LOC for both. The histogram
(gray) shows the distribution of compilation unit sizes for each project, with relative frequency on the Y axis. The scatterplot
shows the analysis times for each compilation unit on the Y axis, marked green (≤ 0.1 seconds), orange (0.1–0.2 seconds),
or red (0.2–1.0 seconds). The dashed lines represent the boundaries at 0.1s (green), 0.2s (orange), and 1.0s (red).

16 6 EVALUATION

BENCHMARK
ANALYSIS FILE MEAN ANALYSIS MEAN MEASURMENTSTIME RANGE COUNT TIME (S) FILE LOC

COMMONS-JXPATH
≤ 0.1s 213 (100%) 0.0021 114

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

ANTLR
≤ 0.1s 192 (100.00%) 0.0039 175

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

JACKSON-CORE
≤ 0.1s 279 (99.6%) 0.0070 163

0.1s - 0.2s 1 (0.4%) 0.1033 2990
0.2s - 1.0s 0 − −

PMD
≤ 0.1s 751 (99.9%) 0.0028 69

0.1s - 0.2s 1 (0.1%) 0.1249 8913
0.2s - 1.0s 0 − −

STRUTS
≤ 0.1s 1110 (99.9%) 0.0031 73

0.1s - 0.2s 1 (0.1%) 0.1115 550
0.2s - 1.0s 0 − −

JODA-TIME
≤ 0.1s 327 (99.1%) 0.0130 255

0.1s - 0.2s 3 (0.9%) 0.1078 1097
0.2s - 1.0s 0 − −

JFREECHART
≤ 0.1s 734 (99.7%) 0.0064 126

0.1s - 0.2s 2 (0.3%) 0.1344 1669
0.2s - 1.0s 0 − −

FOP
≤ 0.1s 1045 (99.8%) 0.0033 96

0.1s - 0.2s 2 (0.2%) 0.1555 1239
0.2s - 1.0s 0 − −

EXTENDJ
≤ 0.1s 349 (88.1%) 0.0253 239

0.1s - 0.2s 31 (7.8%) 0.1500 1073
0.2s - 1.0s 16 (4.0%) 0.3632 1903

CASTOR
≤ 0.1s 1710 (99.9%) 0.0025 93

0.1s - 0.2s 1 (0.1%) 0.1286 1610
0.2s - 1.0s 0 − −

WEKA
≤ 0.1s 1210 (98.9%) 0.0085 184

0.1s - 0.2s 10 (0.8%) 0.1260 1405
0.2s - 1.0s 3 (0.3%) 0.3431 3041

POI
≤ 0.1s 2948 (99.6%) 0.0048 107

0.1s - 0.2s 9 (0.3%) 0.1344 1276
0.2s - 1.0s 2 (0.1%) 0.2144 1902

Table 3: Steady-state performance of INTRAJ for Null Pointer Dereference Analysis for single compilation units across
different Java benchmarks. Each plot overlays a histogram and a scatterplot, with the X axis representing LOC for both. The
histogram (gray) shows the distribution of compilation unit sizes for each project, with relative frequency on the Y axis. The
scatterplot shows the analysis times for each compilation unit on the Y axis, marked green (≤ 0.1 seconds), orange (0.1–0.2
seconds), or red (0.2–1.0 seconds). The dashed lines represent the boundaries at 0.1s (green), 0.2s (orange), and 1.0s (red).

17

Null-pointer dereference analysis is generally more
computationally intensive than dead assignment analysis
due to the requirement of constructing control-flow graphs
in both directions. Despite the increased computational re-
quirements, the analysis times remain low, with the major-
ity of compilation units being processed in under 0.1 sec-
onds. The results for the Null-Pointer Dereference Analysis
are presented in Table 3.

For most projects, nearly all files were analyzed in
under 0.1 seconds. Specifically, 100% of the files in the
COMMONS-JXPATH and ANTLR projects met this threshold.
Similarly, over 99% of the files in most other projects were
also analyzed within 0.1 seconds.

However, there were a few exceptions. In the EXTENDJ

benchmark, while 88% of the files were processed in under
0.1 seconds, one particularly large file with a large method
(over 6000 lines of code) required approximately 1 second
for analysis. Despite this outlier, the overall performance re-
mained efficient.

These results confirm that INTRAJ is highly efficient and
suitable for use in interactive development environments,
even when handling complex and large codebases.

7 Limitations

While INTRAJ demonstrates promising results in providing
efficient, demand-driven analysis for Java code within inter-
active development environments, there are engineering lim-
itations to its approach in both precision and performance,
which we discuss here alongside potential future directions.

INTRAJ’s CFGs are not sound, i.e., the CFGs may not
capture all possible control flows in the analyzed code.
One source of unsoundness is exception flow: INTRAJ
models checked and unchecked exception flows for excep-
tions that are explicitly thrown, but does not account for
exceptions that may occur implicitly at runtime, such as
StackOverflow or OutOfMemoryError. As a result, certain
runtime exceptions are not reflected in the CFG unless ex-
plicitly declared, potentially impacting the accuracy of the
analysis in scenarios involving implicit exception handling.

Another source of unsoundness arises from Java reflec-
tion and the Java Native Interface (JNI), neither of which
are addressed by INTRAJ. With reflection, developers can
access fields and methods that might not be visible in the
source code, or at least not directly, posing significant chal-
lenges for static analysis. This dynamic behavior is a re-
search topic in itself [22,4,24]. This limitation aligns with
the perspective of the Soundiness Manifesto [23], which
suggests making deliberate trade-offs in soundness for us-
ability and responsiveness. Our experiments demonstrate
that static analysis can be made more interactive and respon-
sive, enhancing its usability without compromising its prac-
tical utility.

The analyses presented here are limited to an intraproce-
dural scope, as extending INTRAJ to interprocedural analy-
sis would likely impact the responsiveness required for IDE
integration. Balancing the precision benefits of interproce-
dural analysis with the need for low response times remains
an area for future research.

8 Related Work

The challenge of balancing analysis complexity with tool
responsiveness is a well-known issue in the field of static
analysis.

Existing extensible static analysis frameworks like
SPOTBUGS [39], SOOT [21], or INFER [6] are generally de-
signed for throughput, rather than responsiveness, reflect-
ing their original intended use for batch program analy-
sis. Depending on the internal architecture, increasing re-
sponsiveness for interactive use may require nontrivial re-
engineering.

For example, Distefano et al. manually re-engineered
parts of INFER [9] to support incremental updates, in order
to scale to larger code bases with frequent changes.

Arzt et al. exploited properties of the IFDS/IDE analysis
framework underlying SOOT to incrementalise analysis [2],
but still needed to make some architectural adjustments.

Prior work has demonstrated strategies that allow anal-
ysis frameworks to automatically incrementalise declara-
tively specified analyses. Dura et al. demonstrate this at
the file level [10] for various bug checkers, while Szabo et
al. show fine-grained incrementality for a points-to analy-
sis [41]. Both approaches use declarative logic programming
to specify their analyses.

INTRAJ builds on the RAG framework JASTADD [15],
which provides declarative interfaces between attributes
computed by different components, while implementing
these components in Java rather than in a declarative logic
language. This design naturally ensures that INTRAJ-based
analyses operate in a demand-driven fashion, computing at-
tributes only when required, thereby optimizing efficiency.

In recent years, demand-driven static analysis frame-
works have focused on improving the efficiency and re-
sponsiveness of analyses for interactive development envi-
ronments. Stein et al. [40] introduced the concept of de-
manded summarization, an approach for incrementally up-
dating compositional analyses by dynamically reusing exist-
ing summaries for unmodified code. This technique demon-
strates how incremental abstract interpretation can maintain
analysis precision and consistency even in the face of com-
plex changes, supporting interactive feedback within IDEs.

Similarly, Erhard et al. [12] presented an approach for
multithreaded programs, which addresses the challenges of
incremental analysis in concurrent settings. Their frame-

18 9 CONCLUSIONS AND FUTURE DEVELOPMENT

work limits reanalysis to affected code sections, signifi-
cantly reducing response time and enhancing the interactiv-
ity of analyses within IDEs for multithreaded C programs.

Finally, Söderberg et al. [37] proposed a strategy for us-
ing dynamic dependency tracking to extend the demand-
driven RAG evaluation model to an incremental analysis
model that can re-use information from unchanged parts of
the program, potentially further increasing responsiveness
during interactive editing.

9 Conclusions and Future Development

In this paper, we have revisited INTRAJ, a responsive and
extensible framework for intraprocedural control-flow and
dataflow analysis for Java source code. By leveraging on-
demand evaluation and Reference Attribute Grammars, IN-
TRAJ provides interactive analysis results to the program-
mer, without any noticeable latency in the development en-
vironment.

We discussed the architecture of INTRAJ in detail, illus-
trating how it takes advantage of demand-driven evaluation
with practical examples. To support these claims, we con-
ducted experiments on real-world and diverse codebases,
demonstrating that INTRAJ can analyze most compilation
units in under 0.1 seconds with the provided analyses.

We have also demonstrated how INTRAJ can be used in
different contexts where the programmer can benefit from
on-demand analysis, including a command line interface, an
editor integration based on LSP, and an integration into the
debugging tool CODEPROBER.

Additionally, we have exemplified how INTRAJ can be
extended with new on-demand client analyses by writing
them as RAG specifications.

In the future, we plan to investigate how RAGs can be
used to extend the INTRAJ analyses to support also interpro-
cedural analyses. We also aim to expand the range of analy-
ses supported by INTRAJ, in particular towards detection of
security bugs and vulnerabilities. Furthermore, we see many
interesting opportunities for building more interactive explo-
ration tooling for static analysis, based on CODEPROBER.
For example, it would be interesting to generate interactive
views of the CFG, perhaps similar to Figure 5 or 8.

Acknowledgements

This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP),
funded by the Knut and Alice Wallenberg Foundation.

References

1. Alaküla, A.R., Hedin, G., Fors, N., Pop, A.: Property probes:
Live exploration of program analysis results. J. Syst. Softw. 211,
111980 (2024). URL https://doi.org/10.1016/j.jss.2024
.111980

2. Arzt, S., Bodden, E.: Reviser: efficiently updating ide-/ifds-based
data-flow analyses in response to incremental program changes.
In: Proceedings of the 36th International Conference on Software
Engineering, pp. 288–298 (2014)

3. Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.D., Penix,
J.: Using static analysis to find bugs. IEEE software 25(5), 22–29
(2008)

4. Barros, P., Just, R., Millstein, S., Vines, P., Dietl, W., d’Amorim,
M., Ernst, M.D.: Static analysis of implicit control flow: Re-
solving java reflection and android intents (t). In: 2015 30th
IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pp. 669–679 (2015). DOI 10.1109/ASE.2015.69

5. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley,
K.S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer,
S.Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss, J.E.B.,
Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage,
D., Wiedermann, B.: The DaCapo benchmarks: Java benchmark-
ing development and analysis. In: OOPSLA ’06: Proceedings of
the 21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications, pp. 169–190.
ACM Press, New York, NY, USA (2006). DOI 10.1145/1167473.
1167488. URL http://doi.acm.org/10.1145/1167473.1167
488

6. Calcagno, C., Distefano, D.: Infer: An automatic program verifier
for memory safety of C programs. In: NASA Formal Methods:
Third International Symposium, NFM 2011, Pasadena, CA, USA,
April 18-20, 2011. Proceedings 3, pp. 459–465. Springer (2011)

7. Christakis, M., Bird, C.: What developers want and need from pro-
gram analysis: an empirical study. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software En-
gineering, ASE ’16, p. 332–343. Association for Computing Ma-
chinery, New York, NY, USA (2016). DOI 10.1145/2970276.29
70347. URL https://doi.org/10.1145/2970276.2970347

8. Copeland, T.: PMD applied, vol. 10. Centennial Books Alexan-
dria, Va, USA (2005)

9. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling
static analyses at Facebook. Commun. ACM 62(8), 62–70 (2019).
DOI 10.1145/3338112. URL https://doi.org/10.1145/3338
112

10. Dura, A., Reichenbach, C., Söderberg, E.: JavaDL: Automatically
Incrementalizing Java Bug Pattern Detection. In: Proceedings of
the ACM on Programming Languages. ACM (2021). DOI 10.114
5/3485542

11. Ekman, T., Hedin, G.: The Jastadd extensible java compiler. In:
R.P. Gabriel, D.F. Bacon, C.V. Lopes, G.L.S. Jr. (eds.) Proceed-
ings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada,
pp. 1–18. ACM (2007). DOI 10.1145/1297027.1297029. URL
https://doi.org/10.1145/1297027.1297029

12. Erhard, J., Saan, S., Tilscher, S., Schwarz, M., Holter, K., Voj-
dani, V., Seidl, H.: Interactive abstract interpretation: reanalyz-
ing multithreaded c programs for cheap. International Jour-
nal on Software Tools for Technology Transfer (2024). DOI
10.1007/s10009-024-00768-9. Publisher Copyright: © The
Author(s) 2024.

13. Farrow, R.: Automatic generation of fixed-point-finding evalua-
tors for circular, but well-defined, attribute grammars. ACM SIG-
PLAN Notices 21(7), 85–98 (1986)

14. Hedin, G.: Reference attributed grammars. Informatica (Slovenia)
24(3) (2000)

https://doi.org/10.1016/j.jss.2024.111980
https://doi.org/10.1016/j.jss.2024.111980
http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/1167473.1167488
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://doi.org/10.1145/1297027.1297029

19

15. Hedin, G., Magnusson, E.: Jastadd - a java-based system for im-
plementing front ends. Electron. Notes Theor. Comput. Sci. 44(2),
59–78 (2001). DOI 10.1016/S1571-0661(04)80920-4. URL
https://doi.org/10.1016/S1571-0661(04)80920-4

16. Hedin, G., Magnusson, E.: Jastadd—an aspect-oriented compiler
construction system. Science of Computer Programming 47(1),
37–58 (2003)

17. Jones, L.G., Simon, J.: Hierarchical VLSI design systems based on
attribute grammars. In: Proceedings of the 13th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages,
pp. 58–69 (1986)

18. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frame-
works. Acta informatica 7(3), 305–317 (1977)

19. Kildall, G.A.: A unified approach to global program optimization.
In: Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, POPL ’73, p.
194–206. Association for Computing Machinery, New York, NY,
USA (1973). DOI 10.1145/512927.512945. URL https:
//doi.org/10.1145/512927.512945

20. Knuth, D.E.: Semantics of context-free languages. Mathematical
systems theory 2(2), 127–145 (1968)

21. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The soot framework
for java program analysis: a retrospective. In: Cetus Users and
Compiler Infastructure Workshop (CETUS 2011), vol. 15 (2011)

22. Li, Y., Tan, T., Xue, J.: Understanding and analyzing java reflec-
tion. ACM Trans. Softw. Eng. Methodol. 28(2) (2019). DOI
10.1145/3295739. URL https://doi.org/10.1145/3295739

23. Livshits, B., Sridharan, M., Smaragdakis, Y., Lhoták, O., Ama-
ral, J.N., Chang, B.Y.E., Guyer, S.Z., Khedker, U.P., Møller, A.,
Vardoulakis, D.: In defense of soundiness: a manifesto. Com-
mun. ACM 58(2), 44–46 (2015). DOI 10.1145/2644805. URL
https://doi.org/10.1145/2644805

24. Livshits, V.B., Whaley, J., Lam, M.S.: Reflection analysis for java.
In: K. Yi (ed.) Programming Languages and Systems, Third Asian
Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, Lecture Notes in Computer Science, vol. 3780, pp.
139–160. Springer (2005). DOI 10.1007/11575467_11. URL
https://doi.org/10.1007/11575467_11

25. Luo, L., Dolby, J., Bodden, E.: MagpieBridge: A General Ap-
proach to Integrating Static Analyses into IDEs and Editors (Tool
Insights Paper). In: A.F. Donaldson (ed.) 33rd European Confer-
ence on Object-Oriented Programming (ECOOP 2019), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 134, pp.
21:1–21:25. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2019). DOI 10.4230/LIPIcs.ECOOP.2019.
21. URL http://drops.dagstuhl.de/opus/volltexte/201
9/10813

26. Magnusson, E., Hedin, G.: Circular reference attributed grammars
— their evaluation and applications. Science of Computer Pro-
gramming 68(1), 21–37 (2007). DOI https://doi.org/10.1016/j.
scico.2005.06.005. URL https://www.sciencedirect.com/
science/article/pii/S0167642307000767. Special Issue on
the ETAPS 2003 Workshop on Language Descriptions, Tools and
Applications (LDTA ’03)

27. Magnusson, E., Hedin, G.: Circular reference attributed gram-
mars—their evaluation and applications. Science of Computer
Programming 68(1), 21–37 (2007)

28. Myers, A.C.: Jflow: Practical mostly-static information flow con-
trol. In: A.W. Appel, A. Aiken (eds.) POPL ’99, Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Antonio, TX, USA, January 20-22,
1999, pp. 228–241. ACM (1999). DOI 10.1145/292540.292561.
URL https://doi.org/10.1145/292540.292561

29. Nielsen, J.: Usability engineering. Morgan Kaufmann (1994)
30. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program

Analysis. Springer Publishing Company, Incorporated (2010)

31. Öqvist, J.: Contributions to declarative implementation of static
program analysis. Ph.D. thesis, Lund University, Sweden (2018).
URL http://lup.lub.lu.se/record/82b210fc-6d15-4f0
a-82ff-24b024925d23

32. Riouak, I., Fors, N., Öqvist, J., Hedin, G., Reichenbach, C.: Ef-
ficient demand evaluation of fixed-point attributes using static
analysis. In: Proceedings of the 17th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, SLE ’24,
pp. 56–69. Association for Computing Machinery, New York,
NY, USA (2024). DOI 10.1145/3687997.3695644. URL
https://doi.org/10.1145/3687997.3695644

33. Riouak, I., Reichenbach, C., Hedin, G., Fors, N.: A precise frame-
work for source-level control-flow analysis. In: 2021 IEEE 21st
International Working Conference on Source Code Analysis and
Manipulation (SCAM), pp. 1–11. IEEE (2021). DOI 10.1109/SC
AM52516.2021.00009

34. Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E., Win-
ter, C.: Tricorder: Building a program analysis ecosystem. In:
A. Bertolino, G. Canfora, S.G. Elbaum (eds.) 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1, pp. 598–608. IEEE
Computer Society (2015). DOI 10.1109/ICSE.2015.76. URL
https://doi.org/10.1109/ICSE.2015.76

35. Sawyer, K.: Mystery of orbiter crash solved. Washington Post
p. A1 (1999). URL https://www.washingtonpost.com/wp-s
rv/national/longterm/space/stories/orbiter100199.htm.
Last accessed: 2024-07-26

36. Söderberg, E., Ekman, T., Hedin, G., Magnusson, E.: Extensible
intraprocedural flow analysis at the abstract syntax tree level. Sci.
Comput. Program. 78(10), 1809–1827 (2013). DOI 10.1016/J.SC
ICO.2012.02.002. URL https://doi.org/10.1016/j.scico.
2012.02.002

37. Söderberg, E., Hedin, G.: Incremental evaluation of reference at-
tribute grammars using dynamic dependency tracking (2012). LU-
CS-TR:2012-249 (2012).

38. Soller, M.: Sinfoj: A simple information flow analysis with refer-
ence attribute grammars (2023). Available at http://lup.lub.
lu.se/student-papers/record/9149210

39. SpotBugs. https://spotbugs.github.io/. Accessed: 2023-
02-17

40. Stein, B., Chang, B.Y.E., Sridharan, M.: Interactive abstract in-
terpretation with demanded summarization. ACM Trans. Pro-
gram. Lang. Syst. 46(1) (2024). DOI 10.1145/3648441. URL
https://doi.org/10.1145/3648441

41. Szabó, T., Erdweg, S., Bergmann, G.: Incremental whole-program
analysis in datalog with lattices. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language
Design and Implementation, pp. 1–15 (2021)

42. Tempero, E., Anslow, G., Dietrich, J., Han, T., Li, J., Lumpe, M.,
Melton, H., Noble, J.: Qualitas Corpus: A Curated Collection of
Java Code for Empirical Studies. Software Engineering Confer-
ence, pp. 336–345 (2010)

https://doi.org/10.1016/S1571-0661(04)80920-4
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/3295739
https://doi.org/10.1145/2644805
https://doi.org/10.1007/11575467_11
http://drops.dagstuhl.de/opus/volltexte/2019/10813
http://drops.dagstuhl.de/opus/volltexte/2019/10813
https://www.sciencedirect.com/science/article/pii/S0167642307000767
https://www.sciencedirect.com/science/article/pii/S0167642307000767
https://doi.org/10.1145/292540.292561
http://lup.lub.lu.se/record/82b210fc-6d15-4f0a-82ff-24b024925d23
http://lup.lub.lu.se/record/82b210fc-6d15-4f0a-82ff-24b024925d23
https://doi.org/10.1145/3687997.3695644
https://doi.org/10.1109/ICSE.2015.76
https://www.washingtonpost.com/wp-srv/national/longterm/space/stories/orbiter100199.htm
https://www.washingtonpost.com/wp-srv/national/longterm/space/stories/orbiter100199.htm
https://doi.org/10.1016/j.scico.2012.02.002
https://doi.org/10.1016/j.scico.2012.02.002
http://lup.lub.lu.se/student-papers/record/9149210
http://lup.lub.lu.se/student-papers/record/9149210
https://spotbugs.github.io/
https://doi.org/10.1145/3648441

	Introduction
	Background
	IntraJ Architecture
	Tool Integration
	Extending IntraJ
	Evaluation
	Limitations
	Related Work
	Conclusions and Future Development

