/
\ LA
/

s Towards Declarative Specification of
; s Static Analysis for Programming Tools
' [—

\ \

Doctoral Dissertation, 2024

Department of Computer Science
Lund University

UNIVERSITET

ii

ISBN 978-91-8104-242-9 (electronic version)
ISBN 978-91-8104-241-2 (print version)
ISSN 1404-1219

Doctoral Dissertation 78, 2024

LU-CS-DISS: 2024-05

Department of Computer Science
Lund University

Box 118

SE-221 00 Lund

Sweden

Email: idriss.riouak@cs.1lth.se

Typeset using KIEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2024

© 2024 Idriss Riouak

idriss.riouak@cs.lth.se

The cover of this thesis draws inspiration from the iconic Dragon

Book [[Aho+07]] by Aho, Sethi, and Ullman. Throughout my PhD journey, I often
found myself feeling like the knight on its cover—facing difficult challenges,
dealing with complex problems, and looking for answers in the literature. Like
the knight, I tried to advance, equipped with little more than curiosity and
determination. This image shows those moments of struggle and reflection, a
reminder of the mix of uncertainty, hope, and moments of happiness that come
with exploring a complex field like compiler technology and program analysis.

iv

ABSTRACT

Static program analysis plays a crucial role in ensuring the quality and secu-
rity of software applications by detecting bugs and potential vulnerabilities in
the code. Traditionally, these analyses are performed offline, either as part of
the continuous integration / continuous deployment pipeline or overnight on the
entire repository. However, this delayed feedback disrupts developer productiv-
ity, requiring context switches and adding overhead to the development process.
Integrating these analysis results directly into the integrated development en-
vironment (IDE), similar to how type errors or code smells are reported, would
enhance the development process. As developers increasingly rely on IDEs for
real-time feedback, the efficiency and responsiveness of these tools have become
critical. In such settings, developers expect immediate and precise results as they
write and modify code, making it particularly challenging to achieve response
times sufficiently low to not interrupt the thought process.

This thesis starts addressing these challenges by investigating the design and
implementation of control-flow and dataflow analyses using the declarative Ref-
erence Attribute Grammars formalism. This formalism provides a high-level pro-
gramming approach that enhances expressivity and modularity, making it easier
to develop and maintain analyses.

Central to this thesis is the development of INTRACFG, a language-agnostic
framework designed to perform control-flow and dataflow analyses directly on
source code rather than relying on intermediate representations. By superim-
posing control-flow graphs onto the abstract syntax tree, INTRACFG removes the
need for intermediate representations that are often lossy and expensive to gener-
ate. This approach allows for the construction of efficient but still precise dataflow
analysis.

We demonstrate the effectiveness of INTRACFG through two case studies: IN-
TRAJ and INTRATEAL. These case studies showcase the potential and flexibility
of INTRACFG in diverse contexts, such as bug detection and education. INTRA]
supports the Java programming language, while INTRATEAL is a tool designed for
teaching program analysis for the educational language TEAL. INTRA] has proven
to be faster than, and as precise as, well-known industrial tools.

vi

Abstract

Additionally, this thesis introduces a new algorithm for the demand-driven
evaluation of fixed-point (i.e., circular) attributes, which has proven essential for
the performance of dataflow analyses in INTRAJ. This improvement allows IN-
TRA]J to achieve response times below 0.1 seconds, making it suitable for use in
interactive development environments.

CONTRIBUTION STATEMENT

This thesis is a compilation consisting of an introduction and four papers. Three
of this thesis’ papers are published, and one is under review. The included papers
are the following:

Paper I Idriss Riouak, Christoph Reichenbach, Goérel Hedin and Niklas Fors.
“A PRECISE FRAMEWORK FOR SOURCE-LEVEL CONTROL-FLOW ANALYSIS”.
In 21st International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), pp. 1-11. Virtual, 2021, IEEE.
Paper DOI:|10.1109/SCAM52516.2021.00009.

Paper II Idriss Riouak, Niklas Fors, Goérel Hedin, and Christoph Reichenbach.
“INTRAJ: AN ON-DEMAND FRAMEWORK FOR INTRAPROCEDURAL JAVA CODE
ANALYSIS”.

Submitted for publication.

Paper III Idriss Riouak, Gorel Hedin, Christoph Reichenbach and Niklas Fors.
“JFEATURE: KNOow YOUR Corpus!”
In 22nd International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), pp. 236—241. Limassol, Cyprus, 2022, IEEE.
Paper DOI:|10.1109/SCAM55253.2022.00033,

Paper IV Idriss Riouak, Niklas Fors, Jesper Oqvist, Gérel Hedin and Christoph
Reichenbach.
“EFFICIENT DEMAND EVALUATION OF FIXED-POINT ATTRIBUTES USING
STATIC ANALYSIS™.
In 17th ACM SIGPLAN International Conference on Software Language
Engineering (SLE), Pasadena, California, USA, 2024.
Paper DOI:|10.1145/3687997.3695644.

https://doi.org/10.1109/SCAM52516.2021.00009
https://doi.org/10.1109/SCAM55253.2022.00033
https://doi.org/10.1145/3687997.3695644

viii Contribution Statement

The table below indicates the responsibilities Idriss Riouak had in writing
each paper:

Paper Writing Concepts Implementation Evaluation Artifact

I) D) L 4 o o
I e O o o o
I e D) [L [
v O [) L L o

The dark portion of the circle represents the amount of work and responsi-
bilities assigned to Idriss Riouak for each individual step:

@ Idriss Riouak was a contributor to the work
@ Idriss Riouak led and did a majority of the work

@ Idriss Riouak led and did almost all of the work

Artifacts and Awards Related to the Thesis

Artifact I: Paper[Ijintroduces the INTRACFG and INTRA] static analyzer. The ar-
tifact includes the source code for both frameworks, along with the scripts
used for the evaluation section presented in the paper. It was submitted to
the ROSE (Recognizing and Rewarding Open Science in SE) festival and
awarded the “Open Research Objects” =~ and “Research Objects Reviewed”
@ badges.

DOI:|10.5281/zenodo.5296618.

Artifact II: INTRATEAL is an instance of INTRACFG used in teaching, briefly de-
scribed in Section [4] of this thesis. The artifact contains the source code of
INTRATEAL.

DOI:/10.5281/zenodo.7649171.

Artifact III: Paper [3|introduces the JFEATURE framework. The artifact includes
the source code for JFEATURE, along with the scripts used for the evaluation
section presented in the paper. It was submitted to the ROSE (Recognizing
and Rewarding Open Science in SE) festival and awarded the “Open Re-
search Objects” ~ badge.

DOI:10.5281/zenodo.7053768.

Artifact IV: Paper [4] introduces a new algorithm for the evaluation of circular
RAG attributes. The artifact contains the source code and evaluation re-
sults used in the paper. It was submitted for the SLE Artifact Evaluation

https://icsme2021.github.io/cfp/AEandROSETrack.html
https://icsme2021.github.io/cfp/AEandROSETrack.html
https://icsme2021.github.io/cfp/AEandROSETrack.html
https://doi.org/10.5281/zenodo.5296618
https://doi.org/10.5281/zenodo.7649171
https://icsme2021.github.io/cfp/AEandROSETrack.html
https://icsme2021.github.io/cfp/AEandROSETrack.html
https://doi.org/10.5281/zenodo.7053768

ix

and awarded the badges “Artifacts Available” © and “Artifacts Evaluated -

Reusable” @,
DOI:110.5281/zeno0do.13365896.

Artifact V: The source code for the Callgraph Analysis Tool (CAT), used in Pa-
per[4] is available on GitHub at: https://github.com/IdrissRio/cat.

Award: A short version of Paper {4 was presented at the ACM Student Re-
search Competition at <Programming> 24, Lund, Sweden, where it received
first place in the graduate category. The paper, titled “Using Static Anal-
ysis to Improve the Efficiency of Program Analysis,” is available at ACM:
https://src.acm.org/binaries/content/assets/src/2024/idriss-riouak.pdf.

For a complete list of participants and winners, see ACM Student Research
Competition 2024,

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.5281/zenodo.13365896
https://github.com/IdrissRio/cat
https://src.acm.org/binaries/content/assets/src/2024/idriss-riouak.pdf
https://src.acm.org/candidates/2024
https://src.acm.org/candidates/2024

Contribution Statement

Open Research Objects: “Placed on a publicly accessible
archival repository. A DOI or link to this persistent reposi-
tory along with a unique identifier for the object is provided.
Artifacts have not been formally evaluated.”

Research Object Reviewed: “Artifacts documented, con-
sistent, complete, exercisable, and include appropriate evi-
dence of verification and validation,” and “very carefully
documented and well-structured to the extent that reuse and
repurposing is facilitated. Norms and standards of the re-
search community are strictly adhered to.”

Artifacts Available: “Author-created artifacts relevant
to this paper have been placed on a publically accessible
archival repository. A DOI or link to this repository along
with a unique identifier for the object is provided.”

Artifacts Evaluated - Reusable: “The artifacts associated
with the paper are of a quality that significantly exceeds
minimal functionality. That is, they have all the qualities
of the Artifacts Evaluated - Functional level, but, in addition,
they are very carefully documented and well-structured to
the extent that reuse and repurposing is facilitated. In par-
ticular, norms and standards of the research community for
artifacts of this type are strictly adhered to.”

Badges awarded to the artifacts. Sources: https://icsme2021.github.io/cf

p/AEandROSETrack

.html, https://cyprusconferences.org/icsme2022/ca

l1-for-joint-artifact-evaluation-track-and-rose-festival-track/,
and https://www.acm.org/publications/policies/artifact-review-and

-badging-current,

https://icsme2021.github.io/cfp/AEandROSETrack.html
https://icsme2021.github.io/cfp/AEandROSETrack.html
https://cyprusconferences.org/icsme2022/call-for-joint-artifact-evaluation-track-and-rose-festival-track/
https://cyprusconferences.org/icsme2022/call-for-joint-artifact-evaluation-track-and-rose-festival-track/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

ACKNOWLEDGEMENTS

This journey has been filled with challenges, moments of joy, and invaluable sup-
port from many people. As I reach the end of this chapter, I would like to take a
moment to express my deepest gratitude to those who have made this achieve-
ment possible.

First and foremost, I extend my deepest thanks to my main supervisor, Girel
Hedin. Your guidance, patience, and belief in me have shaped my research in ways
I could never have imagined. Every step of this journey has been made lighter by
your understanding and constant encouragement. The support and suggestions
you offered have been truly invaluable. I couldn’t have asked for a better mentor.

I also want to express my deep appreciation to Christoph Reichenbach. Your
constant support and belief in me made all the difference. You stood by me
through the ups and downs, always ready with advice, guidance, and a bit of
humor. 'm truly grateful for everything. Niklas Fors, thank you for always being
available, ready to listen and offer advice, no matter how many times I dropped
by your office. Your time and advice were invaluable to my progress.

I am also deeply grateful to Jesper Oqvist, Alfred Akesson, Emma Séderberg,
and every member of the SDE group, whose insights and support guided me
throughout this journey. Your contributions, large and small, have left an in-
delible mark on this work.

Special thanks go to Anton Risberg Alakiila for our wonderfully strange con-
versations, especially about how vegetables should wear ties—discussions that
were, oddly enough, more refreshing than anything else. Momina Rizwan, thank
you for the delightful talks about food that somehow made the challenges of
academia seem a little more digestible. To Noric and Flavius, for introducing
me to the joys (and occasional pain) of bouldering, thank you.

I owe a big thank you to the “kids lunchroom table”: Sergio, Matthias, Rikard,
Gustaf, Gareth, Mike?, Esra, Ayesha, Faseeh, and everyone else I haven’t men-
tioned. You were the bright spots during the long days, and I am grateful for the
laughter, the debates, and the very interesting conversations.

To Lars Bendix, thank you for the endless conversations about teaching,

xii

Acknowledgements

academia, Sweden, and Denmark. Your insights and humor were always a breath
of fresh air. Anders Bruce, I am especially grateful for your patience and help
with all my unusual requests—like the time I asked for a bigger whiteboard. Your
kindness never went unnoticed.

My heartfelt thanks also go to Carina, Heidi, Ulrika, Peter, and Birger for
your constant help with all the practicalities. Your support made everything run
smoothly, and I am truly grateful for everything you did.

On a more personal note, I want to thank my family—Mammina e Papino,
Mamon, la Nonenga, my brothers Amine and Yass, and my sisters-in-law Salva
and Dani. Your love, support, and constant encouragement have been my anchor.
A special thanks to Billy for our countless hours of phone calls discussing about
“chicken milk”.

Finally, and most importantly, to Marta Rotari—my rock, my unwavering sup-
port, and the one who believed in me even when I struggled to believe in myself.
Your love, patience, and encouragement have been the foundation of my strength
throughout this journey. Thank you for always pushing me to grow, for lifting
me up when I needed it most, and for being by my side every step of the way.
I am endlessly grateful for your presence in my life, and this achievement is as
much yours as it is mine.

Oh, and of course, I cannot forget my cat, Brioche, who, in her infinite wis-
dom, inspired the Callgraph Analysis Tool (CAT). I dedicate this tool to you, dear
Brioche, for your indispensable contributions of napping and silent companion-
ship.

I would also like to thank the Alice and Knut Wallenberg Foundation for fund-
ing my research through the Wallenberg Al, Autonomous Systems and Software
Program (WASP).

To all of you, from the bottom of my heart, thank you.

Thank you very much!
Tack sa mycket!
Tusinde tak!

Grazie mille!

CONTENTS

[Abstract v
[Contribution Statement| vii
[Acknowledgements| xi
I__Introduction| 1
[Tniroductionl 1
2 Background| 0L 5

:2.1 Automatic Program Analysis| 5

B2 Precision in Static ANAIYSIS - o oo oot 6

:2.3 Control-tflow Graph Construction|. 7

B4 Dataflow ANGISI . . . e 9

25 Attribute Grammars) 13

2.6 Reference Attribute Grammars| 14

[2.7 The JASTADD Metacompiler| 15

2.8 Circular Attributes 18

13 INTRACFG: Intraprocedural Framework for Source-Level |

[Control-Flow Analysis|o....... 24
3.1 Motivation and Challenges| 24

B2 TheINTRACFG FrameworKk 26

3.3 INTRAJ: INTRACFG for Javal 28

3.4 Performance and Precisionl. 32

4 INTRATEAL: INTRACFG for TEALl 32

[> IDE Integration| 35

51 LSP support via MagpieBridge: warnings, quick-fixes and |

35

[bug explanations|

xiv CONTENTS
16 JFEATURE: Java Feature Extractor] 37
|7 Using Static Analysis to Improve the Efficiency of Circular At- |

L tributes| Lo 40
71 Circular Attribute Evaluation for RAGs|. 40

[7.2 Challenges with Existing Solutions| 42

[7.3 Static Analysis for Efficiency Improvement, 43

) ¢ 45

18 Conclusions| 49
References| 51
[Included Papers| 59
[IT A Precise Framework for Source-Level Control-Flow Analysis| 61
1 Introductionl 62
2 RAGs and the INTRACFG frameworkl 63
21 RAG frameworks for control flowl 64

22 The INTRACFG frameworkl. 65

[2.3 Computing the successor attributes|. 67

24 Computing predecessors| 68

I3 INTRAJ: INTRACFG implementation for Java 7[. 70

B1 Statements and Expressions| 70

3.2 Static and Instance Initialisers 72

3.3 Exceptions Modelling| 73

|4 Client Analysis|. 76

4.1 Null Pointer Exception Analysis|. 76

4.2 Live Variable Analysis| 78

4.3 Dead Assignment Analysis| 78
b___EvaluationandResults] 79
BI__Precisionl.« vt vi e 79

5.2 Performancel. 81

6 RelatedWorkl. 84
7___Conclusions| o o 85
References| 86

[[IT TntraJ: An On-Demand Framework for Intraprocedural Java Code |

[Analysis| 91

[TIntroduction] 92
12 Background| 93
2.1 Reference Attribute Grammarsl 93
2.2 Monotone Frameworks|. 95
13 INTRAJ Architecture| 97

3.1 The EXTEND] Compiler. 98

CONTENTS

13.2 The INTRACFG component|. 99
13.3 INTRA] Control-Flow Analysis|. 100
3.4 Dataflow and Client Analyses| 101
5 Demand-Driven Analyses| 103
|4 Tool Integration| 103
[4.1 Command line Integration| 105
B2 Fdior [eration . . - - o o oo oo 105
4.3 CODEPROBER Integration|. 106

[5 Extending INTRAJ| 109
|5.1 Extending INTRAJ's Functionality| 109

5.2 Addition of New Analyses| 109
B3 InformationTIow]oovvinnnn ... 110
[5.4 New Language Constructs| 113
6 Evaluationl 114

6.1 Dead Assignment Analysis| 115
[6.2 Null-Pointer Dereference Analysis| 115

.............................. 120

(8 Conclusions and Future Development| 120
References 121
[IV_JFeature: Know Your Corpus| 125
[Tntroductionl 125
12 JFeature: automatic feature extraction| 127
2.1 Java version features| 127

2.2 Collecting features| 129

B Compora ABAIYSES .« + o o e 130
[3.1 Corpora Description| 130
B2 Evaluationl. 132

|4 Extensibility] o o 134
15 Use cases for JFeature|, 135
5.1 Longitudinal Study| 136

[5.2 Projectmining| 136

[Relatedworkl. 137
|7 Conclusionsl 137
References| e 138

'V Efficient Demand Evaluation of Fixed-Point Attributes Using |

Static Analysis| 143
[I___ _Introductionl 144
[2___Reference Attribute Grammars with Circular Attributes| 145
13 Circular Attribute Algorithms 148

B1__Preliminariesl oot 148

xvi

CONTENTS

[3.3 Subalgorithms and Variables|. 150
3.4 The CIRCULAR Subalgorithm|. 152
[B-5 The NoNCircuLAR Subalgorithm] 156
[. The AGNOsTIC Subalgorithm| 157

An AGNOSTIC Attribute Has No Explicit Bottom Value| . . 158
[An AGNOSTIC AttriEute Does Not Set tEe CHANGE F!aa .. 158
[An AGNOSTIC Attribute Executing the NORMAL Case May |

Be Revisited Downstream| 158
[4 Static Analysis to Identify NONCIRCULAR Attributes| 159
[¢.1 Approach Overview] 160
[¢.2 all Gra onstruction| 161
4.3 Identifying Non-Circular Attributes|. 161
4.4 Imprecision and Limitations| 162
jonl 163
[p.1 Evaluation Setup| L. 163
E.Z Case Study: LL(1) Parser Construction| 164
B3 Case SWAy INTRA] . . » -« o o oo eeeeeeeee . 165
[RelatedWorkl. 169
——Conclusion] 170
[Appendices| 171
|A Safe Evaluation of Incorrectly Specified RAGs| 171
afe Evaluation of Incorrectly Specified NONCIRCULAR
Attributes| 171
[Sate Evaluation of Incorrectly Specified AGNoOsTIC |
Attributes| 172
B Case Study: EXTEND]| 172
References| 172

|[VI Popular Science Summary in English| 179

INTRODUCTION

1 Introduction

Over the past few decades, software has become increasingly important in all sys-
tems. As our dependence on software grows, so do the risks associated with bugs,
which can lead to significant financial losses and even loss of life. Well-known ex-
amples of software bugs include the Therac-25 radiation therapy machine, which
caused six patient deaths due to radiation overdoses [LT93], the Mars Climate
Orbiter crash [Saw99]—resulting in a loss of 327 million dollars—and the Toyota
unintended acceleration which was linked to at least 49 deaths [Kan+10].

While it may seem intuitive to run the program directly to verify its func-
tionality, this approach overlooks the deeper issues at play in large-scale, safety-
critical systems. Testing alone is often insufficient to uncover subtle or rare bugs
that might only manifest under specific circumstances, such as unusual inputs
or environmental conditions. For instance, in the case of the Therac-25, multiple
software failures occurred due to complex interactions between different system
components, which were not anticipated through routine testing [LT93[]. Simi-
larly, with the Toyota unintended acceleration incidents, the flaw was not imme-
diately apparent during standard testing protocols [Kan+10]. In both cases, static
analysis could have identified the issues before they resulted in catastrophic con-
sequences.

Static (program) analysis is a branch of computer science that aims to
study the behavior and properties of computer programs without executing
them. Static analysis is a key technique for ensuring software quality and
reliability and is widely used in various applications such as safety [Cou+05;
Bla+02], security [PKB21; |Arz+14; |Aye+08b; Say+22; FD12], and performance
optimization [Aho+07;|App04].

Static analyzers, the tools implementing these analyses, automatically exam-
ine source code to identify potential issues such as bugs, code smells, or security
vulnerabilities. Due to the complexity and time required by these analyses, they

Introduction

are often executed offline as part of the continuous integration pipeline or run
overnight on the entire repository. While this approach has proven to be ef-
fective, it has practical limitations. In particular, developers must wait for the
analysis results before receiving feedback on their code changes, and if the static
analyzer identifies issues, the developer must then return to the code editor to
address them, potentially disrupting their workflow.

This process can significantly decrease developer productivity, especially if
the developer has already shifted focus to another task while awaiting the anal-
ysis results. In such situations, the developer might lose the context of the code
changes, making it more challenging to address the identified issues. Addition-
ally, the need to repeat the analysis multiple times to ensure all issues are fully
addressed can further reduce productivity.

The current capabilities of modern Integrated Development Environments
(IDEs) have led to a growing interest in developing static analyses that operate
concurrently with the developer’s interactions, providing instant feedback on the
code that is immediately visible to developers [Pis+22]]. These analyses are gen-
erally limited to basic tasks such as syntax highlighting, code completion, type
checking, and the detection of simple code smells, such as unused variables or
unreachable code. These limitations are primarily due to the requirement that
the analysis must be highly responsive, with response times in the IDE needing
to be less than 0.1 seconds for users to perceive the analysis as responsive [Nie94].
More advanced analyses, such as dataflow analysis, however, are still primarily
conducted offline. The complexity of dataflow analysis arises from its focus on
the flow of data and information through a program. This technique is essential
for identifying more challenging sources of errors, such as API protocol viola-
tions, which ensure that software components interact in the correct sequence,
race conditions, and taint analysis, which tracks the flow of sensitive information
through a program. In addition to improving reliability, such analyses can also
enhance program performance by uncovering opportunities for parallelization
and other forms of optimization [Aho+07].

Traditionally, dataflow analysis has been implemented using imperative
paradigms, which are based on the idea of explicitly specifying how the analysis
should be performed. Recently, there has been a growing interest in using
declarative paradigms for dataflow analysis [SEV16; [DR+11; [DR24], which are
based on specifying what the analysis should compute rather than how. The
declarative approach leads to a higher-level specification, resulting in improved
modularity as the emphasis is on the desired outcome, rather than the specific
steps required to achieve it.

In this work, we use Reference Attribute Grammars [Hed00] (RAGs) as a
declarative approach for implementing dataflow analysis. RAGs are a powerful
and flexible formalism for specifying the abstract syntax and semantics of
languages, and as such, they are widely used in the development of compilers
and static analysis tools. Our implementation is primarily based on the Jas-

1 Introduction

TADD [HMO1] RAG system. JASTADD supports RAGs and implements recursive
demand-driven evaluation algorithms, ensuring that properties are evaluated
only when necessary, reducing the overall evaluation time by avoiding redun-
dant computations. Additionally, JASTADD supports circular attributes, which
are crucial for static analysis problems that involve recursive dependencies.
These attributes rely on fixed-point computations, which are challenging [Far86}
JS86] to implement efficiently in a demand-driven evaluation framework.

The primary goal of this thesis is to explore the implementation of static anal-
ysis frameworks using Reference Attribute Grammars. We aim to use the declar-
ative nature of RAGs and their demand-driven evaluation to develop static anal-
yses that can be executed directly within IDEs. One of our main objective is to
achieve highly responsive analyses, with execution times under 0.1 seconds. Our
attention is mainly directed towards intraprocedural dataflow analysis, which in-
volves examining the behavior of a method or function in isolation (i.e., without
considering the interactions with other methods or functions).

In this thesis, we present four complementary contributions that collectively
advance the implementation of static analysis frameworks using RAGs. These
contributions aim to enhance the performance, precision, and applicability of
static analysis techniques, particularly in the context of intraprocedural dataflow
analysis.

In Paper([l] we present INTRACFG, a language-agnostic framework that signif-
icantly improves the efficiency and precision of control-flow graph construction
in static analysis. Our evaluations show that INTRAJ, an instance of INTRACFG
specifically designed for the Java programming language and built upon the Ex-
TEND]J [EHO7b|] compiler, outperforms the industrial tool SONARQUBE in both ef-
ficiency and precision, achieving a response time of less than 0.1 seconds for
intraprocedural analyses.

In Paper [2| we provide a detailed description of INTRA], including its archi-
tecture and implementation, as well as its practical applications as a standalone
tool for full program analysis and for performing on-demand analysis of files
currently visible in the user’s editor.

In Paper [3| we present JFEATURE, a static analysis tool for automatically ex-
tracting features from a Java codebase. JFEATURE enables researchers and de-
velopers to explore various characteristics of a codebase, including the usage
of different Java features e.g., lambda expressions, across various Java versions,
simplifying the identification of suitable corpora for evaluating their tools and
methodologies.

Finally, in Paper [4f we introduce the RELAXEDSTACKED algorithm, a novel
demand-driven evaluation strategy for circular attributes in RAGs. This algo-
rithm addresses inefficiencies in attribute computation within the RAG frame-
work, reducing redundant evaluations of circular attributes and leading to signif-
icant performance improvements.

The remainder of this thesis is organized as follows. In Section [2| we pro-

Introduction

vide background information on program analysis and attribute grammars to en-
sure that the discussion is as self-contained as possible, providing the necessary
context to understand the contributions of this work. In Section [3] we present
INTRACFG along with its Java implementation, INTRAJ, as detailed in Paper
Sectionintroduces INTRATEAL, an implementation of INTRACFG used to teach
program analysis concepts. Section [5| discusses practical uses of INTRAJ and IN-
TRATEAL in integrated development environments. More details about the in-
tegration of INTRAJ into IDEs are covered in Paper [2| In Section @ we present
JFEATURE, a tool for extracting features from Java codebases (Paper [3). Section[7]
focuses on the RELAXEDSTACKED algorithm, a novel demand-driven evaluation
strategy for circular attributes in RAGs, which is presented in Paper[4} Through-
out these sections, we discuss the key challenges in the field and the correspond-
ing solutions proposed by this work. Finally, Section (8| concludes the thesis by
summarizing the contributions and outlining potential directions for future re-
search.

2 Background

2 Background

This section provides an overview of the concepts that underlie the main results
of this thesis, with a focus on program analysis. Specifically, we briefly discuss the
existing techniques behind control-flow graph construction
and dataflow analysis [Kil73], as these are the analyses we focused on in this the-
sis. We will also give a general overview of the declarative approach used to im-
plement these analyses, namely (Reference) attribute grammars Hedo0],
and their implementation through the JASTADD metacompiler. The dependency
graph in Figure 1| shows the relationship between the concepts and the contribu-
tions of this thesis.

IntraTeal

-

Intral > IntraCFG JFeature

! L !

> Dataflo.w N JastAdd | Teal Programming
Analysis Language
| |
v v
L,| Control-Flow Reference Attribute| | L_y|J@va Programming
Analysis Grammars (RAGs) > Language
RelaxedStacked l Legend
Algorithm -
Programming languages
R Call Graph Attribute [[] Static Analysis Topic
g Analysis Grammars Attribute Grammars
[C] New contribution
—» Depends on

Figure 1: Dependency graph of the background concepts and the contributions
of this thesis.

2.1 Automatic Program Analysis

Automatic program analysis is a key area in computer science, aiming to automat-
ically examine and assess the properties of programs, such as correctness, liveness,
and safety. Program analysis can be classified into two main approaches: static
analysis and dynamic analysis.

Dynamic analysis involves evaluating a program’s behavior by executing

Introduction

it. This approach gathers precise information from a specific execution of
the program, which can then be used to infer properties about its behavior.
Dynamic analysis is particularly effective in identifying runtime errors, such
as memory leaks [Lab03], performance bottlenecks [Int]], and security vulner-
abilities [LZZ18]. However, this method has limitations, primarily due to its
dependence on complete and accurate input data for each execution.

In contrast, static analysis examines programs without executing them, re-
lying solely on their source code. This thesis focuses on two fundamental static
analysis techniques: intraprocedural control-flow graph (CFG) construction and
dataflow analysis.

Intraprocedural control-flow graph construction determines the order in
which statements and expressions within a single method are executed. It
provides a finite representation of all the possible paths within a method without
taking into account interactions with other method or function calls. Building
on this, intraprocedural dataflow analysis uses the control-flow information to
deduce how data flows within the same method, enabling the identification of
potential bugs or vulnerabilities.

Traditionally, static analyzers have been implemented using imperative ap-
proaches [LA04; [VR+10|], where control flow and data manipulation are explic-
itly handled through sequences of instructions, offering fine-grained control but
often resulting in complex and less maintainable implementations. In contrast, al-
ternative strategies, such as the use of Datalog [DRS21]], functional programming
approaches [MYL16b]], or ad-hoc implementations designed for specific problems,
provide different trade-offs between expressiveness and efficiency. In this work,
we adopt Reference Attribute Grammars (RAGs) [Hed00], a declarative and modu-
lar approach. By using RAGs, we benefit from high-level abstractions, modularity,
and on-demand evaluation, which contribute to a more efficient and maintainable
implementation.

2.2 Precision in Static Analysis

Precision is a critical factor in static analysis, reflecting the accuracy and gran-
ularity of information about a program’s properties. Traditionally, it has been
assumed that achieving higher precision comes with trade-offs, particularly in
terms of performance and scalability. As a general principle, greater precision
has often been associated with increased computational resource demands, lead-
ing to slower execution times. On the other hand, lower precision can improve
performance but at the cost of producing less accurate or overly general results.

However, recent insights challenge this traditional view. In particular, Erik
Bodden’s work in The Secret Sauce [Bod18] highlights that imprecision caused by
overapproximation can, in many cases, slow down the analysis rather than im-
prove it. While overapproximating may initially seem to reduce computational
complexity, it often leads to excessive false positives and the need to handle a

2 Background

larger set of spurious information, ultimately making the analysis less efficient.
As Bodden suggests, the belief that precision always comes at the cost of per-
formance is no longer as straightforward as once thought. In fact, in the long
run, more precise analyses may outperform less precise ones by reducing the un-
necessary work caused by imprecision. Balancing precision and performance in
static analysis requires careful consideration of how overapproximation affects
long-term efficiency. In simpler terms, the precision of a static analyzer refers
to its ability to minimize false positives, i.e., incorrectly identifying non-existent
bugs or vulnerabilities. In contrast, recall measures the ability to detect all rele-
vant issues, minimizing false negatives. Achieving a balance between precision
and recall often involves trade-offs: increasing precision can reduce recall, po-
tentially missing some bugs, while improving recall may introduce more false
positives, thereby lowering precision.

Despite efforts to balance precision and recall, no static analysis can guarantee
both soundness and completeness [Ric53]. In fact, our approach does not aim
to be either sound or complete but rather practical, focusing on usability and
effectiveness in real-world scenarios. This inherent limitation means that our
analyses, while effective, may still fail to identify all bugs, leading to potential
false positives or negatives [Liv+15].

Nevertheless, we chose to improve the precision of our analysis by focusing
on two specific aspects of the Java language: control flow and exceptions. While
control-flow analysis has been extensively studied [MS18]], exception handling
has not received the same attention in this context. By implementing exception-
sensitive analyses, we aimed to address this gap. Control-sensitivity allows the
analysis to differentiate between true and false branches in conditional state-
ments, such as if-statements, thereby improving precision by considering the
side effects of conditional expressions. Similarly, exception-sensitivity enables
the analysis to track both checked and unchecked exceptions thrown and caught
within the program, enhancing precision by identifying potential bugs related to
exception handling.

2.3 Control-flow Graph Construction

Control-flow graph construction refers to the computation of the execution and
evaluation order of the program’s statements and expressions. Each possible exe-
cution order of a program is called a control-flow path. The result of the control-
flow analysis is a control-flow graph (CFG) G = (V,E). Each vertex v € V rep-
resents a unit of execution, e.g., a single statement or expression, or a basic block
(a sequence of statements without labels and jumps). Each edge (v1,v2) € E rep-
resents a control-flow edge, indicating that the execution of v; may be directly
followed by the execution of vs.

We can distinguish two main approaches to constructing the CFG for a pro-
gram: at the source level and the intermediate representation (IR) level. The

Introduction

Entry
void foo(boolean b){ X =0
Integer x = 0,
if (b) {
x =1; .
} else { if (b)
X = nUIl; TRUE \ALSE
}
3 X = 1\\\j\j‘[ull

Exit

Figure 2: Source level control-flow graph of the foo method, showing the branch-
ing behavior of the if-statement.

source-level approach involves analyzing the source code directly and construct-
ing the CFG based on the abstract syntax tree (AST). The IR approach, on the
other hand, first converts the source code into an intermediate representation,
such as bytecode, and then constructs the CFG from the IR.

Both approaches have their advantages and drawbacks. Constructing the CFG
at the source level allows analysis results to be mapped directly back to the source
code, making it easier to present findings in the context of the original program.
In contrast, constructing the CFG at the IR level requires a translation step to
relate the analysis results to the source code, which may not always be feasi-
ble, as seen with Java’s source-file retention policy for annotations where
information is lost during the process. For this reason, constructing the CFG
at the source level is particularly valuable for tasks such as debugging and pro-
gram understanding, as it provides a clear and direct representation of the pro-
gram. Additionally, this approach can enable faster and more efficient analysis by
eliminating the overhead of IR generation, while also being capable of handling
semantically and syntactically invalid code, making it suitable for analyzing in-
complete programs. Most importantly, constructing the CFG at the source level
is particularly advantageous in interactive scenarios, such as analysis within an
IDE, where the overhead of IR generation may introduce unacceptable latency.

However, there are also disadvantages to constructing the CFG at the source
level. One significant limitation is the difficulty in accurately capturing the con-
trol flow of a program due to unsugared constructs, such as macros and prepro-
cessor directives, which can complicate the specification of the analysis. Addi-
tionally, the source-level approach requires significantly more engineering effort
compared to the IR approach. IRs are typically more compact than source lan-

2 Background

1 : iconst_0 (-

. . entry - 1
2 : invokestatic #7 y
3 : astore_2 12
4 : iload_1 K
5 : ifeq 17 Y
6 : iconst_1 4
7 : invokestatic #7 (8‘5:;}/“"1’7
8 : astore_2 T i
9 : goto 19 LIJ ey
10: aconst_null g
11: astore_2 Hi -

"9 > 12 > exit

12: return

Figure 3: Bytecode control-flow graph of the foo method. Each dashed box rep-
resents a basic block.

guages, which reduces the number of language constructs that need to be han-
dled, thus simplifying CFG construction. Moreover, since an IR can be targeted
by multiple languages, it helps solve the NxM problem by providing a common
representation. In general, the diversity of programming languages, each with
unique syntax and semantics, makes it challenging to design a single analysis
that can be applied universally across different languages.

To illustrate the differences between the source-level and IR-based approaches
discussed, consider the examples in Figures [2| and [3] which show the control-
flow graphs for a simple method foo at both the source level and bytecode level.
As can be seen, the source-level CFG provides a clear and direct representation
of the program’s control flow, making it easier to understand and interpret the
program’s behavior. In contrast, the bytecode CFG is more abstract and difficult to
interpret, as it lacks the high-level constructs present in the source code. We can
also notice that both graphs have been augmented with Entry and Exit nodes,
which represent the unique entry and exit points of the method, respectively.
These nodes are crucial for simplifying the structure of dataflow analyses. For
example, the Entry node provides a clear starting point for the analysis, ensuring
proper initialization of parameters and variables at the beginning of the method.
Similarly, the Exit node becomes important in backward dataflow analyses, which
we will discuss in the next section.

2.4 Dataflow Analysis

Dataflow analysis is a technique used to analyse the flow of data through a pro-
gram. It has its roots in the field of program optimisation [Kil73[], where it was
initially used to identify opportunities for improving the performance of pro-

10

Introduction

grams by tracking variable definitions and uses. This information can be used to
optimise the program by eliminating unnecessary computations (e.g., Very Busy
Expression or Available Expression analyses [Aho+07]]) and improving the use of
available resources (e.g., registers optimisation).

In the context of bug detection, dataflow analysis can be used to identify po-
tential sources of errors in a program by tracking the flow of data through the
program and identifying points where data may be used in unexpected or incor-
rect ways. This can be particularly useful in identifying bugs that may not be
immediately apparent, such as those that only occur under certain conditions or
when certain combinations of input data are used (e.g., IndexOutOfBound excep-
tion). Many static analysis tools for Java programs, e.g., FINDBuGs [Aye+08al,
employ intraprocedural dataflow analysis to identify potential bugs in Java code.
Dataflow analysis, particularly interprocedural dataflow analysis, is widely used
to identify potential security vulnerabilities in software [Arz+14]. For example,
an interprocedural control-flow graph enables tracking of the flow across mul-
tiple methods or functions, thereby allowing identification of points where the
data may be exposed to unauthorized access or manipulation.

We will demonstrate an application of intraprocedural dataflow analysis by
presenting the following practical, but incomplete, example. Let us reconsider
the foo method introduced in Figure[2] Our goal is to determine at each stage of
the program whether the variable x has a null value or no

At the entry point of the method, i.e., Entry node, it is indeterminate whether
x is null or not, as it has not been initialized yet. However, at the declaration of
the variable x, we can determine that it is not null because it is initialised to a
non-null value. Then, if the condition if(b) is true, the variable x is assigned a
new value, which is not null. If the condition is false, the variable x is assigned
null. Therefore, at the end of the method, the variable x may be either null or
not null. Consider the scenario where x is used and dereferenced immediately
after the if-else statement, for example, calling a method on x. The program will
then crash, with a NullPointerException, if x is null. Dataflow information
can be used to identify potential bugs like this in a program.

We keep track of the value of x by mapping it to a finite set of possible values:
null, notnull, maybenull, or unknown. As we traverse the control-flow graph,
we propagate this information from node n to node n’ if (n,n’) € E, until it
reaches the Exit node.

The information is updated at each node n according to the following rules:

« If n is an assignment node, the information is updated according to the
assignment operation. For example, if the assignment is x = null, then it
is recorded that x is updated to null. If the assignment is x = y, then x is
mapped to the value y maps to.

For simplicity, just for this example, we assume that the language allows only assignments of
the form X = Y where Y can be either a variable, a numeric constant or the Nul1 literal. We also
assume that CFG nodes are individual assignments.

2 Background

11

« If nis not an assignment node and has a single predecessor, no information
is updated.

« If n has multiple predecessors, the information from the predecessors
is merged conservatively. Specifically, if x is marked as both null
and notnull by different predecessors, it is conservatively marked as
maybenull.

The dataflow analysis just described is an instance of the mathematical con-
cept of Monotone Frameworks [NNH10]].

Monotone Frameworks

Monotone frameworks are a theoretical approach for reasoning about program
dataflow properties. This approach provides a flexible and generic framework for
expressing and solving dataflow equations, which can be used to reason about a
wide range of dataflow properties, such as live variables, reaching definitions and
available expressions analyses. Monotone frameworks are built on the concept of
lattices [Don63|.

Alattice £ = (S, <) is a partially ordered set in which any two elements have
a unique least upper bound (also known as a join or a supremum) and a unique
greatest lower bound (also known as a meet or an infimum). This means that, for
any elements a and b in S, there exists a unique element denoted as alLlb (or a VV b)
such thata < alUband b < alUb,and alb (or a A b) such that a M b < a and
alb < b. A complete lattice has a unique least element, commonly denoted as L,
and a unique greatest element commonly denoted as T. These elements satisfy
the properties that for any element x in the lattice, L < zandz < T. In dataflow
analysis, lattices are widely used to represent the information flow in a program.
A common example of a lattice used in
dataflow analysis is the binary lattice

with elements true and false, which is maybenull

used to represent the presence or ab- / \
sence of a property. Another example

. ; : S null notnull
is the interval lattice, which is used to

represent ranges of numbers. This lat- \ /

tice, compared to the binary lattice, is unknown

more complex but provides more pre-
cise information about the flow of nu- Figure 4: Diagram of the partial order in
merical values in a program. Addi- the example in Section [2.4] showing the
tionally, while the binary lattice is fi- order relation between maybenull (T),
nite height, the interval lattice can be unknown (L), null, and notnull.
potentially infinite.

Monotone frameworks include a
join operator LI, a monotone trans